
SystemC AMS Based Frameworks for Virtual
Prototyping of Heterogeneous Systems

François Pêcheux
CNRS-Sorbonne University –

UPMC-LIP6, France
francois.pecheux@lip6.fr

Christoph Grimm
Universität Kaiserslautern, Germany

grimm@cs.uni-kl.de

Torsten Maehne
Berner Fachhochschule (BFH),

Switzerland
torsten.maehne@bfh.ch

Martin Barnasconi

NXP Semiconductors, The Netherlands
martin.barnasconi@nxp.com

Karsten Einwich
COSEDA Technologies GmbH, Germany
karsten.einwich@coseda-tech.com

Abstract—This paper presents the past, present, and
perspectives of the SystemC AMS standard as well as several
commercial and academic frameworks gravitating around it that
have been used to develop use cases in various cyber physical
domains. After an overview of the standard, two frameworks are
described: the COSIDE environment that supports the virtual
prototyping of embedded HW/SW systems and its interaction
with AMS circuits. Second, the SICYPHOS framework that
integrates SystemC AMS into the overall system development
ecosystem. By an example we give details how SystemC AMS can
be coupled with other simulation tools (OpenModelica) while
keeping simulation speed and accuracy high. Another example
shows how SystemC AMS can be used as foundation technology
to create specialized user-defined models of computation (MoC).

Keywords—SystemC; SystemC AMS; Heterogeneous Modeling;
Verification

I. INTRODUCTION
The design of heterogeneous systems always involves

different disciplines and physical domains, controlled at some
point by embedded software. In traditional design flows, the
various components of the system are usually designed by
different domain experts with specific idiosyncrasies, and
limited knowledge of their immediate environment. Problems
arise from the fact that these components of various origins
tightly interact in practice on the chip and any fault in the
independently developed system parts can jeopardize the
global system integrity at any time. Furthermore,
heterogeneous systems tightly interact with their immediate,
and often external, environment. As a result, the design process
must take into account environmental conditions that are not
always well known. Different components in these systems
imply the management of tolerances, uncertainties, and
deviations from the expected responses.

To address these issues, system-level simulation and
model-based design methodologies are widely used. However,
using those component models independently is not sufficient
to evaluate the holistic behavior of the system and combining
models from multiple domains is a challenging task. This is
due to the different abstraction levels that have to be used to
address the needs of the concerned engineering domain, the
interaction of behaviors with very different time constants, and

the need to execute the resulting models through different
Models of Computation (MoCs). In this context, SystemC and
its AMS extensions can be used with noticeable profit.

The literature on SystemC AMS is now abundant, and
shows that various physical domains have been addressed,
ranging from mechanics to biology, fluidics [27] and bond
graphs [26]. With a substantial amount of contributions related
to automotive and RF systems, this standard appeared over the
years as an attractive virtual prototyping solution for many
industry and academia designers.

The rest of this paper is organized as follows: Section 2
presents the origins of the SystemC AMS standard. Section 3
describes the virtual prototyping capabilities offered by the
COSIDE environment, and Section 4 details the SICYPHOS
environment with the help of a working automotive use case.
Section 5 proposes another use case, which puts emphasis in
the pragmatic encapsulation of ngspice into a holistic SystemC-
AMS-based virtual prototype for RFID systems. Section 6
concludes the paper.

II. HISTORY OF SYSTEMC AMS AND MAIN ACHIEVEMENTS
The origins of today’s SystemC AMS extensions can be

traced back till 2001 [1,2]. This early SystemC-AMS prototype
extended the then current SystemC 1.1 simulator with
Synchronous Data Flow and Linear Electric Network MoCs. A
SystemC AMS study group was formed soon-after [3] to
further collect the requirements for SystemC AMS and
implementation experience from other SystemC extensions to
refine the semantics of the new MoCs and test them in the
prototype [4]. The development of the SystemC AMS standard
continued in the AMS Working Group (AMSWG) of the Open
SystemC Initiative (OSCI) in 2006. The working groups
mission is to define and develop the language, associated
methodologies and class libraries for abstract modeling
approaches for analog, mixed-signal, and RF systems in
SystemC. 2010 marked the release of the SystemC AMS 1.0
standard [4], which first enabled to describe analog/mixed-
signal behavior using three MoCs (Timed Data Flow (TDF),
Linear Signal Flow (LSF), and Electrical Linear Networks
(ELN)) as a natural extension to existing SystemC-based
design methodologies. In March 2013, the SystemC AMS 2.0

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Atieva USA Inc. dba Lucid Motors USA Inc.. Downloaded on May 02,2022 at 02:27:30 UTC from IEEE Xplore. Restrictions apply.

standard update [10] was released including features for
dynamic and reactive modeling at a high level of abstraction.

A further revision of the SystemC AMS standard was
released on April 6, 2016 as IEEE Std 1666.1-2016. In
combination with the well-established SystemC language
(IEEE Std 1666-2011), a standards-based system-level
modeling approach is now available to support functional
modeling, model refinement, architecture exploration, and
virtual prototyping of AMS systems.

One of the main achievements of the SystemC AMS
language is probably the dynamic capabilities of the Timed
Data Flow MoC. The initial TDF MoC of SystemC AMS was
based on the traditional Synchronous Data Flow (SDF) MoC,
which suffered from a severe restriction by imposing a fixed
time step. In TDF, continuous signals are evaluated (sampled)
in constant discrete time steps. Setting a small time step
permits higher accuracy, but has a negative effect on the global
simulation performance. Therefore, it is crucial to set the
time step to the most suitable value, in order to achieve a good
accuracy-performance trade-off. Unfortunately, in
heterogeneous systems, the different parts of the system
commonly expose extremely different time constants, which
might differ by several orders of magnitude. Moreover, the
same part of the system might change its behavior during
operation, e.g., if it implements active and sleep modes or if it
is dynamically reconfigurable like in the case of software-
defined radios. It is therefore crucial to be able to modify the
time step and rates, at which samples are consumed/produced
at the ports of TDF modules, during simulation. It is helpful to
be able to dynamically suspend the execution of a TDF model
to wait on events from the SystemC Discrete Event (DE) MoC.
The dynamic features introduced in the IEEE Std 1666.1-
2016 language address these advanced use cases.

Members of the AMSWG participated in the development
of the SystemC implementation of the Universal Verification
Methodology (UVM) standard (IEEE Std 1800.2-2017). It
consolidates verification best practices offering a unified
approach for test and sequence creation, building verification
components, test bench configuration, and simulation.
SystemC AMS and UVM provide complementary solutions for
efficient virtual prototyping of heterogeneous systems.

III. THE SYSTEMC AMS COSIDE FRAMEWORK
 The COSEDA Technologies GmbH was founded in 2015
as a spin-off from the Fraunhofer Institute for Integrated
Circuits (IIS), Design Automation Division (EAS), where the
SystemC Proof of Concept simulator was initially developed.
COSIDE [16] is an integrated design environment for
heterogeneous systems. It closes the gap between the analog
and digital domains as well as between the hardware and
software worlds. The motivations for COSIDE were to speed
up the modelling process, lowering the entry level for
beginners, increasing the model quality, enable re-use and
integrate system level design and simulation into the overall
design flow. This will be achieved by graphical modelling
capabilities, generation of code templates as well as large
modelling libraries. So COSIDE offers a holistic system-level
design entry by considering the different worlds of

development jointly. On this way the overall system consisting
of hardware, software, analogue as well as physical
components can be co-designed and verified using virtual
prototypes at different levels of abstraction. In practice,
COSIDE offers an easy to use modeling framework to simulate
and verify complete systems based on SystemC and SystemC
AMS. It is the result of a long effort to propose to the ESL
community an operational and complete virtual prototyping
environment. Besides the advantages coming along with the
underlying SystemC/SystemC AMS technologies like
extremely fast simulation, a lot of import and export
capabilities to numerous tools are provided. On this way
COSIDE enables a seamless crossover from algorithm,
concept, and architectural level design down to the
implementation. Due COSIDE fully supports SystemC and the
TLM standard any SystemC model can be integrated and thus
third party digital platforms can be easily integrated. COSIDE
integrates the Qbox, which provides based on the virtualization
platform Qemu processor models. The environment comes
along with debug capabilities like a scriptable mixed-signal
waveform viewer, a SystemC/ SystemC AMS aware debugger
and numerous library and utility functions. The integrated
libraries provide modules at different abstraction levels and
different modelling domains. Thus an RF library supports
passband, baseband as well as envelope modelling. A
mechanical library permits the modelling of the environment
e.g. of complex sensors. Several communication libraries
support the modeling of buses (e.g. LIN, CAN) as well as
physical interfaces like SATA. Most of the COSIDE models
can be used as templates for user defined models.

IV. THE SYSTEMC AMS SICYPHOS FRAMEWORK
 SICYPHOS is an acronym for SImulation of CYber-
PHysical Systems. The SICYPHOS framework shows how to
embed SystemC AMS into a systems modeling ecosystem for
modeling of heterogeneous systems. SysML provides the
overall model of the system structure and component interfaces
between different domains (e.g., software, electrical, AMS,
mechanical, etc.). Its key aspects are shown in Figure 1.

System	model
(SysML)	

Software
(C++)	

HW/SW/AMS
(SystemC	TLM,	AMS)	

Physical
(Modelica)	

FMITLM

Figure 1: The SICYPHOS framework.

The SysML model is translated into domain-specific
languages, in particular SystemC (AMS) or Modelica models.
The generated models focus on two aspects:

• Cross-domain consistency of interfaces and the
generation of simulator coupling interfaces.

• Cross-domain tracking of uncertainties like tolerances,
noise, drift, model inaccuracies, etc. [5] supported by
symbolic simulation of SystemC AMS models [6].

For this approach, the OpenModelica or JModelica
environments are used for modeling of multiphysical systems,

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Atieva USA Inc. dba Lucid Motors USA Inc.. Downloaded on May 02,2022 at 02:27:30 UTC from IEEE Xplore. Restrictions apply.

actuators, sensors and their environment. The HW/SW co-
design and analog-mixed signal modeling is done with
SystemC AMS. Software can be modeled in C++; for
interfacing with software models, e.g., TLM can be used or an
instruction set simulator. The basis for the required simulator
coupling is the TDF MoC of SystemC AMS. For integration
with other Modelica simulators as well as MATLAB/Simulink,
Dymola, ETAS ASCET, the code generation from SysML is
capable to export the interface specification of the models
following the Functional Mock-up Interface (FMI) standard.
The proposed approach accelerates the systems design process
through model-based systems development.

 As a proposed co-simulation use case, a throttle valve
actuator and associated control system have been modeled with
OpenModelica and SystemC AMS. In an Electronic Throttle
Controller (ETC), the response of the closed loop depends on
the dynamics of the actuator. Therefore, the impact of varying
properties, such as the gear ratio of the valve, the throttle blade
inertia, supply voltage, and return spring constants, needs to be
studied with the help of the developed model to understand the
dynamics of the system and estimate the control performance.
The FMI standard [9] enables the export of this model for use
in other modeling environments.

Figure 2: The SICYPHOS use case.

The Figure 2 illustrates the co-simulation set-up, which
embeds the Modelica models of the sensor and actuator in the
SystemC AMS model of the overall Hw/Sw system. To
accelerate the development of the latter and increase simulation
speed, Transaction level modelling (TLM) is used to abstract
communication between processor and peripherals. The
TDF MoC and its dynamic features are used in the co-
simulation backplane. To increase the simulation performance
and to reduce the computation requirements, we investigated
the possibility of dynamic simulation based on triggers from
the physical environment. To this end, the environment model
in OpenModelica is able to generate dynamic events to the co-
simulation framework. For instance, the events like opening or
closing of the throttle valve can be randomized and can be used
to create dynamic events. This in turn triggers the control
algorithms executed on the SystemC processor models. These
algorithms implemented in C/C++ can be reused for the
application software development. Figure 3 shows an example
of system response simulated by the SICYPHOS environment.

Figure 3: System response for throttle valve

parameter variations.

V. SYSTEMC AMS USE CASE : RFID
Several attempts have been made to introduce new MoCs in

SystemC AMS to address new disciplines and modeling
techniques, in particular MoCs that can handle non-linear
behaviors. Unfortunately, these efforts needed to rely on non-
standardized internal APIs of SystemC AMS complicating
their implementation. By studying the pioneering works at
Fraunhofer on SystemC AMS and at Berkeley on Ptolemy
regarding multi-MoC synchronization, the following work
developed a methodology to simplify the addition of new
MoCs to the SystemC AMS proof-of-concept simulator.

The developed solution is based on the fundamental
concept of a MoC hierarchy with master-slave semantics.
Starting from the description of several Models of
Computation, the relevant features, which constitute the
essence of a MoC, have been extracted, i.e., the information
required to represent any MoC in an abstract way. In a second
step, the concept of master-slave relationship as an interaction
mechanism between Models of Computation was formalized.
Master-slave semantics are a powerful concept for facilitating
the simulation of heterogeneous systems, which individual
components may be described using the semantics of
conceptually very different MoCs while still seamlessly
interacting with each other. This guarantees the flexibility of
the target virtual prototyping environment.

By requiring that a master MoC solver does not need to be
aware of the existence of potential slave MoC solvers, any
slave MoC solver must comply with its master’s interface for
model elaboration and simulation, i.e., fulfill all its
requirements and meet all its expectations. This design
decision makes it possible for these master-slave relationships
to be represented as an encapsulation process. The approach
specifies that all the available modes of interaction between
MoCs to exchange information and synchronize their
execution are statically defined and that they are provided by a
slave MoC solver. This enables the automatic abstraction of a
sub-model following the semantics of the slave MoC to a
slave MoC solver object inside the master model. This
hierarchical heterogeneity approach allows the user to focus
only on the important and relevant design and modeling
issues, not simulator related ones.
As an example, the passive RFID reading system in Figure 4
is modeled in SystemC AMS by means of three different
MoCs, organized hierarchically: Discrete Event (DE) drives

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Atieva USA Inc. dba Lucid Motors USA Inc.. Downloaded on May 02,2022 at 02:27:30 UTC from IEEE Xplore. Restrictions apply.

Timed Data Flow (TDF) that in turn drives the user-defined
Electrical Networks (EN) MoC. The interesting point is that
the master-slave semantics with a clearly defined API
interface allowed to define a new EN MoC as an add-on to
SystemC AMS that gives the end-user the possibility of the
modeling of any linear or non-linear component as it in fact
encapsulates the well-known ngspice simulator.

Figure 4: The RFID transceiver modeled with 3 MoCs.

Figure 5: RFID virtual prototyping tag bitstream traces.

The RFID transceiver is composed of a transmission chain
and a reception chain connected to the primary coil. The most
interesting part, the transceiver reception circuit corresponds
to an amplitude demodulator that aims at retrieving the
information transmitted by the transponder. The demodulation
chain is composed of an envelope detector, envelope filter,
and an envelope centerer, all modeled with the EN MoC. The
envelope detector aims at straightening the received signal,
then removing its negative part as well as the carrier that
supported the transmitted information. The virtual prototyping
environment based on these principles is operational as stated
by Figure 5.

VI. CONCLUSION
This paper presented the developments of the SystemC

AMS extensions, resulting in an IEEE supported international
language standard. The presented frameworks truly enable co-
simulation of models developed with third-party tools in the
SystemC AMS environment. Both commercial and academic
tools have been described that fulfill the needs for efficient

holistic simulation methodologies and formal model-based
systems engineering. These methodologies seamlessly
integrate both discrete and continuous domains with
reasonable accuracy and enable highly promising and realistic
system designs. They improve the modeling, co-simulation
and verification at a high level of abstraction, and the
embedded software developed in the virtual environments can
be used directly in the final product.

REFERENCES
[1] C. Grimm, C. Meise, AnalogSL: A Library for Modeling Analog Power

Drivers in C++. Proc. 2001 Forum on Design Languages (FDL'01)
2001.

[2] K. Einwich, C. Clauss, G. Noessing, P. Schwarz, H. Zojer: SystemC
Extensions for Mixed-Signal System Design, FDL2001

[3] K. Einwich, C. Grimm, A. Vachoux. N.Martinez Madrid, F.R. Moreno,
C. Meise, “Analog Mixed Signal Extensions for SystemC”, OSCI 2002.

[4] Karsten Einwich, Christoph Grimm, Peter Schwarz, Klaus Waldschmidt:
Mixed-Signal Extensions for SystemC. Forum on Design Languages
2002 (FDL 2002). ECSI, Sept.2002

[5] C.Grimm, M. Rathmair. “Dealing with Uncertainties in AMS systems”,
In: Proceedings of DAC 2017. IEEE 2017.

[6] C. Radojicic, C. Grimm, “Towards Verification of Uncertain Cyber-
Physical Systems”. In: Proceedings of SNR 2017. pp1-17, DOI:
10.4204/EPTCS.247.1

[7] Andersson,Christian,JohanÅkesson,ClausFührer,andMagnusGäfvert:Imp
ort and Export of Functional Mock-up Units in JModelica.org. Modelica
Associa- tion, 2011, ISBN 978-91-7393-096-3.

[8] Åkesson, Johan, Karl Erik Årzén, Magnus Gäfvert, Tove Bergdahl, and
Hubertus Tummescheit: Modeling and Optimization with Optimica and
JModelica.org— Languages and Tools for Solving Large-Scale
Dynamic Optimization Problems. Computers and Chemical
Engineering, 34(11):1737–1749, November 2010.

[9] Bertsch, Christian, Elmar Ahle, and Ulrich Schulmeister: The Functional
Mockup Interface - seen from an industrial perspective. In Proceedings
of the 10th International Modelica Conference,
http://dx.doi.org/10.3384/ecp1409627, March 2014.

[10] Barnasconi, Martin, Karsten Einwich, Christoph Grimm, and Alain
Vachoux (editors): Standard SystemC® AMS extensions 2.0 Language
Reference Manua. OSCI, 2013. http://accellera.org.

[11] Blochwitz,Torsten,MOtter,MArnold,CBausch,CClauß,HElmqvist,AJung
- hanns, J Mauss, M Monteiro, T Neidhold, et al.: The functional
mockup interface for tool independent exchange of simulation models. In
Modelica’2011 Conference, March, pages 20–22, 2011.

[12] Damm, Markus, Christoph Grimm, Jan Haase, Andreas Herrholz, and
Wolfgang Nebel: Connecting SystemC-AMS models with OSCI TLM
2.0 models using temporal decoupling. In 2008 Forum on Specification,
Verification and Design Lan- guages, pages 25–30. IEEE, September
2008, ISBN 978-1-4244-2264-7. http: //dblp.uni-
trier.de/db/conf/fdl/fdl2008.html\#DammGHHN08.

[13] Fritzson, P., P. Aronsson, A. Pop, Hakan Lundvall, Kaj Nystrom, Levon
Saldamli, D. Broman, and Anders Sandholm: OpenModelica - A free
open-source environ- ment for system modeling, simulation, and
teaching. In Computer Aided Control System Design, 2006 IEEE
International Conference on Control Applications, 2006 IEEE
International Symposium on Intelligent Control, 2006 IEEE, pages
1588–1595, Oct 2006.

[14] Functional Mock-up Interface for Model Exchange and Co-Simulation,
July 2014.

[15] Model-Based Integration Platform for FMI Co-Simulation and
Heterogeneous Simulations of Cyber-Physical Systems, volume
Proceedings of the 10th International Modelica Conference. Modelica
Association and Linkoping University Electronic Press, 2014, ISBN
978-91-7519-380-9.

[16] Coseda Technologies GmbH. Coside. http://www.coseda-
tech.com/coside-overview.

978-1-5386-4881-0/18/$31.00 ©2018 IEEE

Authorized licensed use limited to: Atieva USA Inc. dba Lucid Motors USA Inc.. Downloaded on May 02,2022 at 02:27:30 UTC from IEEE Xplore. Restrictions apply.

