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UVM what is it?
• Universal Verification Methodology to create modular, 

scalable, configurable and reusable testbenches based 
on verification components with standardized interfaces 

• Class library which provides a set of built-in features 
dedicated to verification, e.g., phasing, component 
overriding (factory), configuration, comparing, 
scoreboarding, reporting, etc.

• Environment supporting migration from directed testing 
towards Coverage Driven Verification (CDV) which 
consists of automated stimulus generation, independent 
result checking and coverage collection
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UVM what is it not…
• Infrastructure offering tests or scenario’s out-of-the-box: 

all behaviour has to be implemented by user
• Coverage-based verification templates: application is 

responsible for coverage and randomization definition; 
UVM only offers the hooks and technology

• Verification management of requirements, test items or 
scenario’s

• Test item execution and regression – automation via e.g. 
the command line interface or “regression cockpit” is a 
shell around UVM
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Outline
• Part A - Introduction
• Part B – UVM Elements and Applications
• Part C – Further steps & Outlook
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Main concepts of UVM (1)
• Clear separation of test stimuli (sequences) and test bench

– Sequences are treated as ‘transient objects’ and thus independent 
from the test bench construction and composition

– In this way, sequences can be developed and reused independently
• Introducing test bench abstraction levels

– Communication between test bench components based on 
transaction level modeling (TLM)

– Register abstraction layer (RAL) using register model, adapters, and 
predictors

• Reusable verification components based on standardized 
interfaces and responsibilities
– Universal Verification Components (UVCs) offer sequencer, driver and 

monitor functionality with clearly defined (TLM) interfaces
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Main concepts of UVM (2)
• Non-intrusive test bench configuration and customization

– Hierarchy independent configuration and resource database to store 
and retrieve properties everywhere in the environment

– Factory design pattern introduced to easily replace UVM components 
or objects for specific tests

– User-defined callbacks to extend or customize UVC functionality
• Well defined execution and synchronization process

– Simulation based on phasing concept: build, connect, run, extract, 
check and report. UVM offers additional refined run-time phases

– Objection and event mechanism to manage phase transitions
• Independent result checking

– Coverage collection, signal monitoring and independent result 
checking in scoreboard are running autonomously
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Verification stack: 
tools, language and methodology
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UVM Layered Architecture
• The top-level (e.g. sc_main) contains the 

test(s), the DUT and its interfaces
• The DUT interfaces are stored in a 

configuration database, so it can be used 
by the UVCs to connect to the DUT

• The test bench contains the UVCs, 
register model, adapter, scoreboard and 
(virtual) sequencer to execute the 
stimuli and check the result

• The test to be executed is either defined 
by the test class instantiation or by the 
member function run_test
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UVM layered architecture
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Why UVM in SystemC?
• Elevate verification beyond block-level towards system-level

– System verification and Software-driven verification are executed by 
teams not familiar with SystemVerilog and its simulation environment

– Trend: Tests coded in C or C++. System and SW engineers use an 
(open source) tool-suite for embedded system design and SW dev. 

• Structured ESL verification environment
– The verification environment to develop Virtual Platforms and Virtual 

Prototypes is currently ad-hoc and not well architected
– Beneficial if the first system-level verification environment is UVM 

compliant and can be reused later by the IC verification team

• Extendable, fully open source, and future proof
– Based on Accellera’s Open Source SystemC simulator
– As SystemC is C++, a rich set of C++ libraries can be integrated easily
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Why UVM in SystemC?
• Support analogue DUTs with

SystemC AMS
• Reuse tests and test benches across 

verification (simulation) and validation 
(HW-prototyping) platforms
– requires portable language like C++ to 

run tests on HW prototypes, 
measurement equipment, …

– Enables Hardware-in-the-Loop simulation 
and Rapid Control Prototyping
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UVM in SystemC versus UV in 
SystemVerilog

• UVM-SystemC follows the UVM 1.1 standard where possible 
and/or applicable
– Equivalent UVM base classes and member functions implemented in 

SystemC/C++
– Use of existing SystemC functionality where applicable

• TLM interfaces and communication
• Reporting mechanism

– Only a limited set of UVM macros is implemented
• usage of some UVM macros is not encouraged and thus not introduced

• UVM-SystemC does not cover the ‘native’ verification features 
of SystemVerilog, but considers them as (SCV) extensions
– Constrained randomization
– Coverage groups (not part of SCV yet)
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Outline
• Part B – UVM Elements and Applications

– Components and Classes
– Register Model
– Abstraction re-use
– Generator
– Visualization
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UVM Testbench setup
• Required minimum

– Test
– Testbench
– Agent
– Sequencer
– Driver
– Monitor
– DUT
– Scoreboard

• Optional
– More Agents
– Virtual Sequencers
– Register Model
– Extensive configuration on every element
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UVM agent

• Component responsible to drive 
and monitor the DUT 

• Typically contains three 
components
– Sequencer
– Driver
– Monitor

• Could contain analysis 
functionality for basic coverage 
and checking
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UVM agent

• Possible configurations
• Active agent: sequencer and driver are 

enabled
• Passive agent: only monitors signals 

(sequencer and driver are disabled)
• Master or slave configuration

• Base class: uvm_agent
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UVM sequencer

• The sequencer controls and delivers 
transaction data items upon request of 
the driver*

• This allows to react to the current state 
of the DUT for every data item 
generated

• The UVM standard describes an 
interface between sequencer and driver 
that follows TLM (1.0) communication

• The sequencer serves as an arbiter for 
controlling transactions from multiple 
stimulus generators

• Base class: uvm_sequencer
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UVM driver

• The driver is responsible to create 
the physical signals to drive the DUT

• For this, the driver repeatedly 
requests transactions, encapsulated 
in a sequence, via the sequencer, 
and translates these to one or more 
physical signal(s)

• Connection between the driver and 
the DUT is established by using a 
dedicated channel, which is made 
available via the configuration 
mechanism

• Base class: uvm_driver
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UVM monitor

• The monitor is a passive element 
that ‘only’ captures the DUT signals

• It extracts signal information from the 
interface and translates this 
information to abstract transactions

• It will distribute this transaction to all 
connected elements for e.g. coverage 
collection and checking

• Connection between the monitor and 
the DUT is established by using a 
dedicated channel, which is made 
available via the configuration 
mechanism

• Base class: uvm_monitor
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UVM verification component (UVC)

• A reusable verification component 
(UVC) is a (sub-) environment which 
consists of one or more agents

• The verification component or 
agents may set or get configuration 
parameters

• An independent sequence, which 
contains the actual transaction data, 
is processed by the driver via a 
sequencer

• Each verification component is 
connected to the DUT using a 
dedicated interface

• Base class: uvm_env
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UVM sequences

• Sequences are part of the test scenario 
and define streams of transactions

• The properties (or attributes) of a 
transaction are captured in a sequence 
item

• Sequences are not part of the testbench
hierarchy, but are mapped onto one or 
more sequencers

• Sequences can be layered, hierarchical or 
virtual, and may contain multiple 
sequences or sequence items

• Sequences and transactions can be 
configured via the factory
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UVM virtual sequence

• A virtual sequence encapsulates one 
or more sequences, which are 
executed on the sub-sequencers in 
each UVC agent, which are all 
connected to the parent virtual 
sequencer

• A virtual sequence can be configured 
as default sequence in a test, to 
facilitate automatic execution on a 
virtual sequencer or a sequencer 
which belongs to a UVC agent

• Base class: uvm_sequence
(same as ‘normal’ sequences)
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UVM virtual sequencer

• A virtual sequencer contains 
references to its subsequencers
such as UVC sequencers or other 
virtual sequencers

• Virtual sequencers process virtual 
sequences which encapsulate 
sequences for multiple verification 
components

• Virtual sequencers do not execute 
transactions on themselves but 
‘offload’ this to its subsequencers

• Base class: uvm_sequencer
(same as ‘normal’ sequencers)
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UVM scoreboard

• The scoreboard performs 
end-to-end checking by 
comparing expected and processed 
transactions

• These transactions are retrieved by 
dedicated subscribers or listeners, which 
implement the write method of the 
analysis ports of each monitor, to which 
these subscribers are connected

• A scoreboard may contain a predictor, 
which acts as reference or golden model. 
Alternatively, the scoreboard may 
contain an algorithm to calculate the 
expected transaction

• Base class: uvm_scoreboard
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UVM test

• Each UVM test is defined as a 
dedicated test class, which 
instantiates the testbench and 
defines the test sequence(s)

• Reuse of tests and topologies is 
possible by deriving tests from a test 
base class

• The configuration and factory concept 
can be used to configure or override 
UVM components, sequences or 
sequence items

• Tests can be selected (passed) as  
command line option*

• Base class: uvm_test
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UVM testbench

• A testbench is defined as the 
complete environment which 
instantiates and configures the 
UVCs, scoreboard, and virtual 
sequencer if available

• The UVCs are sub-environments in 
a testbench

• The testbench only makes the 
connections between the 
scoreboard and virtual sequencer 
to each UVC; the connection 
between UVCs and the DUT is 
arranged within the UVCs
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UVM configuration mechanism

• Central resource database to store 
and retrieve any type specific 
information of UVM and non-UVM 
objects at any place in the 
verification environment

• Configuration is facilitated during 
the build process and/or run time

• Information can be accessed by 
name (string) or arbitrary type

• Scope (context) of accessibility of 
information can be defined by the 
application

• Easy access to resource database via the 
configuration mechanism uvm_config_db

• Base class: uvm_resource
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Top, Tests and Testbench

• The top-level (e.g. sc_main) 
contains the test(s) and the 
DUT

• The interface to which the DUT 
is connected is stored in the 
configuration database, so it 
can be used by the UVCs to 
connect to the DUT

• The test to be executed is 
either defined by the test class 
instantiation or by the 
argument of the member 
function run_test
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Work-in-Progress: Register Abstraction Layer
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Register Abstraction Layer Status
Register model containing registers, fields, blocks, etc. testing
Register callbacks testing
Register adapter, predictor, sequences and 
transaction items

testing

Register front-door access testing
Build-in register test sequencers development
Memory and memory allocation manager development
Virtual registers and fields development
Register back-door access (hdl_path) study
Randomization of registers study
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Application Examples



UVM-SystemC Generator
• Generator is based on easier uvm code generator for 

SystemVerilog from Doulos
(http://www.doulos.com/knowhow/sysverilog/uvm/
easier_uvm_generator/)

• Generator uses template files as input, which are 
similiar to the Doulos generator

• Generates complete running UVM-SystemC 
environment
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UVM-SystemC Generator
• Generated UVM objects and files:

– UVM_Agent
– UVM_Scoreboard
– UVM_Driver
– UVM_Monitor
– UVM_Sequencer
– UVM_Environment
– UVM_Config
– UVM_Subscriber
– UVM_Test
– Makefile to compile the generated UVM project
– Instantiation and DUT connection
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UVM-SystemC Generator

• Input file for generating
a complete agent
– Transaction items
– Interface ports

• General Config File

• DUT connection to
agent interfaces (DUT 
port <-> agent port))

© Accellera Systems Initiative 33

#agent name
agent_name = clkndata

#transaction item
trans_item = data_tx

#transaction variables
trans_var = int data

#interface ports
if_port = sc_core::sc_signal<bool> clk
if_port = sc_core::sc_signal<bool> reset_n
if_port = sc_core::sc_signal<bool> scl
if_port = sc_core::sc_signal<bool> sda
if_port = sc_core::sc_signal<bool> rw_master

if_clock = clk
if_reset = reset_n

#agent mode
agent_is_active = UVM_ACTIVE

#DUT directory
dut_source_path = mydut
#Additional includes
inc_path = include
#DUT toplevel name
dut_top = mydut
#Pin connection file
dut_pfile = pinlist

!clkndata_if
clk clk
reset_n reset_n
rw_master1 rw_master
scl1 scl
sda1 sda

!agent2_if
...



Hands-on example (Generator)

• DUT is a minimalistic ALU
• Tests checks basic arithmetic

with static operands
• Plain SystemC Testbench as

reference
• Re-implementation with

UVM-SystemC
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Hands-on example (Visualizer)
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Benefits
• Avoidance of boilerplate code copy & paste disasters
• Manual input amount as in hand-crafted testbench

– DUT setup
– Test sequence
– Driver implementation for DUT driving
– Monitor implementation for DUT interpreting

• UVM conformity
• Re-Usage because of modularity more likely

© Accellera Systems Initiative 36



Re-use across abstraction levels (1)
• Design of a complex system

within a SystemC environment
– One-time verification setup with

UVM-SystemC
– Behavioral model for concept

phase
– Detailed model for further

implementation require additional 
tests
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Re-use across abstraction levels (2)
• Continued use of previous

verification setup by running the
verification environment as a 
real-time model on a HiL
platform
– Exchange of UVM driver

verification components suitable
for the board

– Additional tests specific to new
model details
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Re-use across abstraction levels (3)
• Continued use of previous

verification setup by running the
verification environment as a 
real-time model on lab-test 
equipment
– Exchange of UVM driver

verification components necessary
– Re-use of all tests possible
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Source: ZedBoard.org
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Re-use across abstraction levels (4)
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Outline
• Part C – Further steps & Outlook

– Standardization in Accellera
– Next steps
– Summary and outlook
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Standardization in Accellera
• Standardization in SystemC 

Verification WG ongoing
– UVM-SystemC Language 

Reference Manual (LRM) 
completed

– Improving the UVM-SystemC
Proof-of-Concept (PoC) 
implementation

– Creation of a UVM-SystemC 
regression suite started

• Draft release of UVM-SystemC 
planned for CW48/49 2015
– Both LRM and PoC available under 

the Apache 2.0 license
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• Main focus this year: 
– Further mature and test the proof-of-concept implementation
– Extend the regression suite with unit tests and more complex 

(application) examples

• Next year…
– Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)
– Add constrained randomization capabilities (e.g. SCV, CRAVE)
– Introduction of assertions and functional coverage features

• …and beyond: IEEE standardization
– Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

Next steps in VWG
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Summary and outlook
• Good progress with UVM-SystemC standardization in 

Accellera
• UVM foundation elements are implemented
• Register Abstraction Layer currently under 

development
• Review of Language Reference Manual finished and 

Proof-of-concept implementation ongoing
• Draft release of UVM-SystemC planned for CW48/49 

2015
– Updates of LRM and PoC implementation afterwards
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