
UVM-SystemC in COSIDE®

Stephan Schulz (FhG IIS/EAS),
Martin Barnasconi (NXP)

1
© Accellera Systems Initiative

UVM what is it?
• Universal Verification Methodology to create modular,

scalable, configurable and reusable testbenches based
on verification components with standardized interfaces

• Class library which provides a set of built-in features
dedicated to verification, e.g., phasing, component
overriding (factory), configuration, comparing,
scoreboarding, reporting, etc.

• Environment supporting migration from directed testing
towards Coverage Driven Verification (CDV) which
consists of automated stimulus generation, independent
result checking and coverage collection

2© Accellera Systems Initiative

UVM what is it not…
• Infrastructure offering tests or scenario’s out-of-the-box:

all behaviour has to be implemented by user
• Coverage-based verification templates: application is

responsible for coverage and randomization definition;
UVM only offers the hooks and technology

• Verification management of requirements, test items or
scenario’s

• Test item execution and regression – automation via e.g.
the command line interface or “regression cockpit” is a
shell around UVM

3© Accellera Systems Initiative

Outline
• Part A - Introduction
• Part B – UVM Elements and Applications
• Part C – Further steps & Outlook

4© Accellera Systems Initiative

Main concepts of UVM (1)
• Clear separation of test stimuli (sequences) and test bench

– Sequences are treated as ‘transient objects’ and thus independent
from the test bench construction and composition

– In this way, sequences can be developed and reused independently
• Introducing test bench abstraction levels

– Communication between test bench components based on
transaction level modeling (TLM)

– Register abstraction layer (RAL) using register model, adapters, and
predictors

• Reusable verification components based on standardized
interfaces and responsibilities
– Universal Verification Components (UVCs) offer sequencer, driver and

monitor functionality with clearly defined (TLM) interfaces

5© Accellera Systems Initiative

Main concepts of UVM (2)
• Non-intrusive test bench configuration and customization

– Hierarchy independent configuration and resource database to store
and retrieve properties everywhere in the environment

– Factory design pattern introduced to easily replace UVM components
or objects for specific tests

– User-defined callbacks to extend or customize UVC functionality
• Well defined execution and synchronization process

– Simulation based on phasing concept: build, connect, run, extract,
check and report. UVM offers additional refined run-time phases

– Objection and event mechanism to manage phase transitions
• Independent result checking

– Coverage collection, signal monitoring and independent result
checking in scoreboard are running autonomously

6© Accellera Systems Initiative

Verification stack:
tools, language and methodology

7

SystemC(-AMS)
compliant simulator

SystemC(-AMS)
Language

UVM (-SC / -AMS)
Class library

Universal Verification
Methodology

Verification
management

Language and modeling technology elements:
Tool / simulator

Addition tool layer like “verification cockpit”
(e.g. vManager, vPlan)

UVM technology elements:
• Methodology = what
• Class library = how

UVM-SystemC scope

© Accellera Systems Initiative

UVM Layered Architecture
• The top-level (e.g. sc_main) contains the

test(s), the DUT and its interfaces
• The DUT interfaces are stored in a

configuration database, so it can be used
by the UVCs to connect to the DUT

• The test bench contains the UVCs,
register model, adapter, scoreboard and
(virtual) sequencer to execute the
stimuli and check the result

• The test to be executed is either defined
by the test class instantiation or by the
member function run_test

8

top (sc_main)

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent

MonDrv

Sqrconf conf

config

scoreboard

Subscr
2

ref
model

Subscr
1

Test configregister
sequence

virtual
sequencer

Reg model

Adapter

rw

Interf1

UVC2 (env)

Interf2

DUT

© Accellera Systems Initiative

UVM layered architecture

9

Spec

Test cases

Scenario

Signal

Test casesTest

Fu
nc

tio
na

l c
ov

er
ag

e

Functional

Command Monitor

ScoreboardSequencer

Driver Monitor

Verification component

Verification environment (test bench)

Device
under test

Sequences

© Accellera Systems Initiative

Why UVM in SystemC?
• Elevate verification beyond block-level towards system-level

– System verification and Software-driven verification are executed by
teams not familiar with SystemVerilog and its simulation environment

– Trend: Tests coded in C or C++. System and SW engineers use an
(open source) tool-suite for embedded system design and SW dev.

• Structured ESL verification environment
– The verification environment to develop Virtual Platforms and Virtual

Prototypes is currently ad-hoc and not well architected
– Beneficial if the first system-level verification environment is UVM

compliant and can be reused later by the IC verification team

• Extendable, fully open source, and future proof
– Based on Accellera’s Open Source SystemC simulator
– As SystemC is C++, a rich set of C++ libraries can be integrated easily

10© Accellera Systems Initiative

Why UVM in SystemC?
• Support analogue DUTs with

SystemC AMS
• Reuse tests and test benches across

verification (simulation) and validation
(HW-prototyping) platforms
– requires portable language like C++ to

run tests on HW prototypes,
measurement equipment, …

– Enables Hardware-in-the-Loop simulation
and Rapid Control Prototyping

11© Accellera Systems Initiative

UVM in SystemC versus UV in
SystemVerilog

• UVM-SystemC follows the UVM 1.1 standard where possible
and/or applicable
– Equivalent UVM base classes and member functions implemented in

SystemC/C++
– Use of existing SystemC functionality where applicable

• TLM interfaces and communication
• Reporting mechanism

– Only a limited set of UVM macros is implemented
• usage of some UVM macros is not encouraged and thus not introduced

• UVM-SystemC does not cover the ‘native’ verification features
of SystemVerilog, but considers them as (SCV) extensions
– Constrained randomization
– Coverage groups (not part of SCV yet)

12© Accellera Systems Initiative

Outline
• Part B – UVM Elements and Applications

– Components and Classes
– Register Model
– Abstraction re-use
– Generator
– Visualization

13© Accellera Systems Initiative

UVM Testbench setup
• Required minimum

– Test
– Testbench
– Agent
– Sequencer
– Driver
– Monitor
– DUT
– Scoreboard

• Optional
– More Agents
– Virtual Sequencers
– Register Model
– Extensive configuration on every element

© Accellera Systems Initiative 14

top (sc_main)

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent

MonDrv

Sqrconf conf

config

scoreboard

Subscr
2

ref
model

Subscr
1

Test configregister
sequence

virtual
sequencer

Reg model

Adapter

rw

Interf1

UVC2 (env)

Interf2

DUT

UVM agent

• Component responsible to drive
and monitor the DUT

• Typically contains three
components
– Sequencer
– Driver
– Monitor

• Could contain analysis
functionality for basic coverage
and checking

15

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM agent

• Possible configurations
• Active agent: sequencer and driver are

enabled
• Passive agent: only monitors signals

(sequencer and driver are disabled)
• Master or slave configuration

• Base class: uvm_agent

16

agent

driver monitor

sequencer
config

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM sequencer

• The sequencer controls and delivers
transaction data items upon request of
the driver*

• This allows to react to the current state
of the DUT for every data item
generated

• The UVM standard describes an
interface between sequencer and driver
that follows TLM (1.0) communication

• The sequencer serves as an arbiter for
controlling transactions from multiple
stimulus generators

• Base class: uvm_sequencer

17

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

* Alternatively, there is a UVM
push sequencer (class
uvm_push_sequencer)
which pushes the sequence
items to the driver, but this is
not yet available in UVM-
SystemC

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM driver

• The driver is responsible to create
the physical signals to drive the DUT

• For this, the driver repeatedly
requests transactions, encapsulated
in a sequence, via the sequencer,
and translates these to one or more
physical signal(s)

• Connection between the driver and
the DUT is established by using a
dedicated channel, which is made
available via the configuration
mechanism

• Base class: uvm_driver

18

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM monitor

• The monitor is a passive element
that ‘only’ captures the DUT signals

• It extracts signal information from the
interface and translates this
information to abstract transactions

• It will distribute this transaction to all
connected elements for e.g. coverage
collection and checking

• Connection between the monitor and
the DUT is established by using a
dedicated channel, which is made
available via the configuration
mechanism

• Base class: uvm_monitor

19

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

trans

seq

vifvif

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM verification component (UVC)

• A reusable verification component
(UVC) is a (sub-) environment which
consists of one or more agents

• The verification component or
agents may set or get configuration
parameters

• An independent sequence, which
contains the actual transaction data,
is processed by the driver via a
sequencer

• Each verification component is
connected to the DUT using a
dedicated interface

• Base class: uvm_env

20

agent

driver monitor

sequencer

seq_item_port

seq_item_export

item_collected_port

UVM verification component (env)
config

trans

seq

vifvif

config

analysis

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM sequences

• Sequences are part of the test scenario
and define streams of transactions

• The properties (or attributes) of a
transaction are captured in a sequence
item

• Sequences are not part of the testbench
hierarchy, but are mapped onto one or
more sequencers

• Sequences can be layered, hierarchical or
virtual, and may contain multiple
sequences or sequence items

• Sequences and transactions can be
configured via the factory

21

transaction

transaction

transaction

sequence

seq

seq1

seq2

trans

trans

seq1

trans

trans

seq2

© Accellera Systems Initiative

UVM virtual sequence

• A virtual sequence encapsulates one
or more sequences, which are
executed on the sub-sequencers in
each UVC agent, which are all
connected to the parent virtual
sequencer

• A virtual sequence can be configured
as default sequence in a test, to
facilitate automatic execution on a
virtual sequencer or a sequencer
which belongs to a UVC agent

• Base class: uvm_sequence
(same as ‘normal’ sequences)

22

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM virtual sequencer

• A virtual sequencer contains
references to its subsequencers
such as UVC sequencers or other
virtual sequencers

• Virtual sequencers process virtual
sequences which encapsulate
sequences for multiple verification
components

• Virtual sequencers do not execute
transactions on themselves but
‘offload’ this to its subsequencers

• Base class: uvm_sequencer
(same as ‘normal’ sequencers)

23

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM scoreboard

• The scoreboard performs
end-to-end checking by
comparing expected and processed
transactions

• These transactions are retrieved by
dedicated subscribers or listeners, which
implement the write method of the
analysis ports of each monitor, to which
these subscribers are connected

• A scoreboard may contain a predictor,
which acts as reference or golden model.
Alternatively, the scoreboard may
contain an algorithm to calculate the
expected transaction

• Base class: uvm_scoreboard

24

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM test

• Each UVM test is defined as a
dedicated test class, which
instantiates the testbench and
defines the test sequence(s)

• Reuse of tests and topologies is
possible by deriving tests from a test
base class

• The configuration and factory concept
can be used to configure or override
UVM components, sequences or
sequence items

• Tests can be selected (passed) as
command line option*

• Base class: uvm_test

25

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

* Not yet available in UVM-SystemC

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM testbench

• A testbench is defined as the
complete environment which
instantiates and configures the
UVCs, scoreboard, and virtual
sequencer if available

• The UVCs are sub-environments in
a testbench

• The testbench only makes the
connections between the
scoreboard and virtual sequencer
to each UVC; the connection
between UVCs and the DUT is
arranged within the UVCs

26

Testbench (env) config

Test configdefault
sequence

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

conf

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

UVM configuration mechanism

• Central resource database to store
and retrieve any type specific
information of UVM and non-UVM
objects at any place in the
verification environment

• Configuration is facilitated during
the build process and/or run time

• Information can be accessed by
name (string) or arbitrary type

• Scope (context) of accessibility of
information can be defined by the
application

• Easy access to resource database via the
configuration mechanism uvm_config_db

• Base class: uvm_resource

27

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test configdefault
sequence

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Top, Tests and Testbench

• The top-level (e.g. sc_main)
contains the test(s) and the
DUT

• The interface to which the DUT
is connected is stored in the
configuration database, so it
can be used by the UVCs to
connect to the DUT

• The test to be executed is
either defined by the test class
instantiation or by the
argument of the member
function run_test

28

DUT

AMS DIG SW

Testbench (env)

…..agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test

top (sc_main)

configdefault
sequence

in

out

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

Work-in-Progress: Register Abstraction Layer

29

Register Abstraction Layer Status
Register model containing registers, fields, blocks, etc. testing
Register callbacks testing
Register adapter, predictor, sequences and
transaction items

testing

Register front-door access testing
Build-in register test sequencers development
Memory and memory allocation manager development
Virtual registers and fields development
Register back-door access (hdl_path) study
Randomization of registers study

© Accellera Systems Initiative
NOTE: UVM-SystemC API and LRM under review – subject to change

30

Application Examples

UVM-SystemC Generator
• Generator is based on easier uvm code generator for

SystemVerilog from Doulos
(http://www.doulos.com/knowhow/sysverilog/uvm/
easier_uvm_generator/)

• Generator uses template files as input, which are
similiar to the Doulos generator

• Generates complete running UVM-SystemC
environment

© Accellera Systems Initiative 31

UVM-SystemC Generator
• Generated UVM objects and files:

– UVM_Agent
– UVM_Scoreboard
– UVM_Driver
– UVM_Monitor
– UVM_Sequencer
– UVM_Environment
– UVM_Config
– UVM_Subscriber
– UVM_Test
– Makefile to compile the generated UVM project
– Instantiation and DUT connection

© Accellera Systems Initiative 32

UVM-SystemC Generator

• Input file for generating
a complete agent
– Transaction items
– Interface ports

• General Config File

• DUT connection to
agent interfaces (DUT
port <-> agent port))

© Accellera Systems Initiative 33

#agent name
agent_name = clkndata

#transaction item
trans_item = data_tx

#transaction variables
trans_var = int data

#interface ports
if_port = sc_core::sc_signal<bool> clk
if_port = sc_core::sc_signal<bool> reset_n
if_port = sc_core::sc_signal<bool> scl
if_port = sc_core::sc_signal<bool> sda
if_port = sc_core::sc_signal<bool> rw_master

if_clock = clk
if_reset = reset_n

#agent mode
agent_is_active = UVM_ACTIVE

#DUT directory
dut_source_path = mydut
#Additional includes
inc_path = include
#DUT toplevel name
dut_top = mydut
#Pin connection file
dut_pfile = pinlist

!clkndata_if
clk clk
reset_n reset_n
rw_master1 rw_master
scl1 scl
sda1 sda

!agent2_if
...

Hands-on example (Generator)

• DUT is a minimalistic ALU
• Tests checks basic arithmetic

with static operands
• Plain SystemC Testbench as

reference
• Re-implementation with

UVM-SystemC

© Accellera Systems Initiative 34

DUT

AMS DIG SW

Testbench (env)

agent
UVC1 (env)

MonDrv

Sqr

agent
UVC2 (env)

MonDrv

Sqrconf conf

config

virtual
sequencer

scoreboard
Subscr

2
ref

model
Subscr

1

Test

top (sc_main)

configdefault
sequence

in outµALUclk_gen
clk

rst

a
b
op
x

Hands-on example (Visualizer)

© Accellera Systems Initiative 35

Benefits
• Avoidance of boilerplate code copy & paste disasters
• Manual input amount as in hand-crafted testbench

– DUT setup
– Test sequence
– Driver implementation for DUT driving
– Monitor implementation for DUT interpreting

• UVM conformity
• Re-Usage because of modularity more likely

© Accellera Systems Initiative 36

Re-use across abstraction levels (1)
• Design of a complex system

within a SystemC environment
– One-time verification setup with

UVM-SystemC
– Behavioral model for concept

phase
– Detailed model for further

implementation require additional
tests

© Accellera Systems Initiative 37

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Re-use across abstraction levels (2)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on a HiL
platform
– Exchange of UVM driver

verification components suitable
for the board

– Additional tests specific to new
model details

© Accellera Systems Initiative 38

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Re-use across abstraction levels (3)
• Continued use of previous

verification setup by running the
verification environment as a
real-time model on lab-test
equipment
– Exchange of UVM driver

verification components necessary
– Re-use of all tests possible

© Accellera Systems Initiative 39

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

Re-use across abstraction levels (4)

© Accellera Systems Initiative 40

download

monitor
integrate

DUT

Testbench (env)

agent
UVC1 (env)

Driver
SystemC

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Simulation - SystemC

configdefault
sequence

SystemC - Behavioral

vif

agent
UVC2 (env)

Monitor
SystemC

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Emulation

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

FPGA - Emulation

vif

agent
UVC2 (env)

Monitor
Emulation

vif

Source: ZedBoard.org

DUT

Testbench (env)

agent
UVC1 (env)

Driver
Lab equip

config

virtual
sequence

r

scoreboard
Subscr

2
ref

model
Subscr

1

Test

Real Time Hardware

configdefault
sequence

ASIC – 1st Silicon

vif

agent
UVC2 (env)

Monitor
Lab equip

vif

Outline
• Part C – Further steps & Outlook

– Standardization in Accellera
– Next steps
– Summary and outlook

41

Standardization in Accellera
• Standardization in SystemC

Verification WG ongoing
– UVM-SystemC Language

Reference Manual (LRM)
completed

– Improving the UVM-SystemC
Proof-of-Concept (PoC)
implementation

– Creation of a UVM-SystemC
regression suite started

• Draft release of UVM-SystemC
planned for CW48/49 2015
– Both LRM and PoC available under

the Apache 2.0 license
42© Accellera Systems Initiative

NOTE: UVM-SystemC API and LRM under review – subject to change

• Main focus this year:
– Further mature and test the proof-of-concept implementation
– Extend the regression suite with unit tests and more complex

(application) examples

• Next year…
– Finalize upgrade to UVM 1.2 (upgrade to UVM 1.2 already started)
– Add constrained randomization capabilities (e.g. SCV, CRAVE)
– Introduction of assertions and functional coverage features

• …and beyond: IEEE standardization
– Alignment with IEEE P1800.2 (UVM-SystemVerilog) necessary

Next steps in VWG

43© Accellera Systems Initiative

Summary and outlook
• Good progress with UVM-SystemC standardization in

Accellera
• UVM foundation elements are implemented
• Register Abstraction Layer currently under

development
• Review of Language Reference Manual finished and

Proof-of-concept implementation ongoing
• Draft release of UVM-SystemC planned for CW48/49

2015
– Updates of LRM and PoC implementation afterwards

© Accellera Systems Initiative 44

	UVM-SystemC in COSIDE®
	UVM what is it?
	UVM what is it not…
	Outline
	Main concepts of UVM (1)
	Main concepts of UVM (2)
	Verification stack: �tools, language and methodology
	UVM Layered Architecture
	UVM layered architecture
	Why UVM in SystemC?
	Why UVM in SystemC?
	UVM in SystemC versus UV in SystemVerilog
	Outline
	UVM Testbench setup
	UVM agent
	UVM agent
	UVM sequencer
	UVM driver
	UVM monitor
	UVM verification component (UVC)
	UVM sequences
	UVM virtual sequence
	UVM virtual sequencer
	UVM scoreboard
	UVM test
	UVM testbench
	UVM configuration mechanism
	Top, Tests and Testbench
	Work-in-Progress: Register Abstraction Layer
	Foliennummer 30
	UVM-SystemC Generator
	UVM-SystemC Generator
	UVM-SystemC Generator
	Hands-on example (Generator)
	Hands-on example (Visualizer)
	Benefits
	Re-use across abstraction levels (1)
	Re-use across abstraction levels (2)
	Re-use across abstraction levels (3)
	Re-use across abstraction levels (4)
	Outline
	Standardization in Accellera
	Next steps in VWG
	Summary and outlook

