AMS Timing Closure with Coside

Using timing-aware models and static analysis techniques

Guillermo Conde Infineon Technologies Austria 04.11.2020

- 1 Introduction
- Timing in Synchronous Digital Systems
- Timing in AMS Systems
- 4 SystemC timing-aware models
- 5 Coming next ...

- Introduction
- 2 Timing in Synchronous Digital Systems
- Timing in AMS Systems
- SystemC timing-aware models
- Coming next ...

Introduction

- Timing closure is the process by which a logic design (sequential + combinatorial gates) is modified to meet its timing requirements.
- Semi-custom logic designs meeting timing closure via Static Timing Analysis (STA).
 - Timing requirements are translated into static timing constraints to the EDA tool.
 - Models including accurate timing characterization
- > Lack of systematic timing closure in AMS designs.
 - No timing requirements in place.
 - Models do not include any timing characterization.
 - Timing issues detected very late in development

Goals

- To extract timing requirements from full custom designs
- Yes the timing of standard cells at System C level
 - Delays
 - Timing constraints
- To perform a simulation-based timing analysis in order to fullfill all timing requirements.
- Voltimate goal: To develop a static timing analysis tool to be applied in AMS designs in early development stages.

- 1 Introduction
- Timing in Synchronous Digital Systems
- Timing in AMS Systems
- 4 SystemC timing-aware models
- 5 Coming next ...

Timing basics in digital systems

Most common sequencing elements are latches and flip-flops

Basic timing contraints and delays

2020-11-04

- Worst case scenario known including PVT
- Systematic method to guarantee proper timing (STA)
- Systems insensitive to PVT variations once timing is guaranteed

Digital flow rules: Synchronous systems based on FFs and constant clock period

Infineon Proprietary

Source: CMOS VLSI Design, Neil H.E Weste

Semi-custom design flow

2020-11-04

- STA evaluates automatically all timing paths
- Intrinsic gate delay derived from the library
- Loads are either estimated statiscally or derived from the floorplanning.

Timing information available in the early phases of development

Source: CMOS VLSI Design, Neil H.E Weste

Infineon Proprietary

- 1 Introduction
- Timing in Synchronous Digital Systems
- Timing in AMS Systems
- 4 SystemC timing-aware models
- 5 Coming next ...

AMS design components

- Semi-custom logic (digital part) composed of:
 - Logic gates
 - Sequential gates
 - Flip-flops
 - AMS designs composed of:
 - Analog part
 - Full-custom logic: Timing provided in Liberty files
 - Analog blocks: Timing characterization has to be calculated
 - Digital part: Timing closure determined by STA tools

Full-custom logic (in the analog design flow) composed of

- Logic gates
- Sequential gates
 - Flip-flops
 - Latches
 - Special cells

Full-custom design flow

- Extracted simulation at system level late in the development phase
- Simulation is required
 - no timing analysis tools available
 - Potential failing scenarios have to be identified in advanced

Source: CMOS VLSI Design, Neil H.E Weste

- 1 Introduction
- Timing in Synchronous Digital Systems
- Timing in AMS Systems
- 4 SystemC timing-aware models
- 5 Coming next ...

Timing-aware models

- System C models with 4-value data types
- Delay included
- Time stamps taken at every event
- Automatic checks on
 - Setup and hold time
 - Reset recovery and removal
 - Minimum Pulse Width

Delay Path	Load Capacitance [fF]				
[ps]	5	10	25	50	250
CP ↑ ⇒ QN ↓	403	422	473	552	1.18e+03
$CP \uparrow \Rightarrow QN \uparrow$	443	463	519	613	1.35e+03
$RN \downarrow \Rightarrow QN \uparrow \uparrow$	266	286	343	436	1.18e+03

	Constraint [ps]		
Check	typ		
D	133		
D	14.9		
D ↑ setup CP ↑	159		
D ↑ hold CP ↑	24.2		
RN ↑ recovery CP ↑	-261		
RN ↑ removal CP ↑	263		

MPW	value [ps]
CP (L)	173
CP (H)	156
RN (L)	274

- Limitations
 - Manual set of timing parameters
 - Only valid for one corner

Liberty Files

- Open Source ASCII format to specify:
 - PVT Characterization
 - Relating Input and Output chracteristics
 - Timing
 - Power
 - Noise
- Cell delays/constraints depending on:
 - Input slew
 - Output load

Joseph A. Elias, Ph.D, University of Kentucky, Adjunct Professor, ECE Dept; Cypress Semiconductor MTS

AMS Timing Closure Automation

- 1 Introduction
- Timing in Synchronous Digital Systems
- Timing in AMS Systems
- 4 SystemC timing-aware models
- 5 Coming next ...

Coming next...

- Limited verification environment
 - No input constraints
 - No system-level checks
 - Simulation-based environment

- Formal static analysis
 - Automatic calculation of timing parameters based on output load and input slew
 - Formal Timing analysis based on system properties:
 - Cell delay
 - Standard-cell timing constraints

Part of your life. Part of tomorrow.

