
1

SystemC-WMS:Wave Mixed Signal Simulator
Simone Orcioni, Giorgio Biagetti, and Massimo Conti

Abstract— This work presents a methodology for extend-

ing SystemC to mixed signal heterogeneous systems. To this

end, a method for modelling analog modules using wave

quantities is proposed, and a new kind of port and channel

have been defined. This class library is plugged directly

on top of the standard SystemC kernel, so as to allow

a seamless integration with the pre-existing simulation

environment.

I. INTRODUCTION

S
YSTEMC is an emerging tool for the description

and simulation of hardware and software at system

level [1], and it is not rare that this high level of

abstraction could require the interfacing of both digital

and analog parts. To this aim it has been proposed [2] to

constitute an Open SystemC Initiative (OSCI) Working

Group devoted to the development of an extension of

SystemC to mixed-signal simulation: SystemC-AMS.

The basic SystemC methodology [1] makes use of

modules and interfaces to describe complex systems.

Modules communicate through interfaces, implemented

in a channel, by calling methods in the channel. Con-

versely, events in the channel can activate modules con-

nected to the channel itself. The present work proposes a

methodology for the description of analog blocks using

only such instruments and libraries. Taking advantage

of this communication scheme and of the underlying

SystemC kernel, we implement the various analog parts

of a system as analog modules, which communicate by

exchanging energy waves through wavechannel inter-

faces.

II. MODELLING OF ANALOG MODULES IN SYSTEMC

The main goal of our methodology is to describe each

analog module, which comprises a system, by means

of a system of nonlinear ordinary differential equations

(ODE) of the following type:
{

ẋ = f(x,u)
y = g(x, u)

(1)

The authors are with the Dipartimento di Elettronica, Intelligenza
artificiale e Telecomunicazioni, Università Politecnica delle Marche,
I-60131 Ancona, Italy (e-mail: SystemC-WMS@deit.univpm.it).

Publisher Item Identifier . . .

j vj

ij

bj

j
aj

Fig. 1. On the left, electrical port symbol using wave quantities

where f and g are vector expressions describing system

dynamics, while x, y and u are state, output and input

vectors, respectively. Equation (1) should describe a

part of the system under consideration, like an N -port

modelled at circuital level, or it may represent a high

level macromodel describing the part functionality.

A. Module representation based on wave-exchange

The use of the incident/reflected wave model [3]

greatly simplify the problems of taking into account the

connection between modules, since it can be mandated

that modules use incident waves as inputs and produce

reflected waves as outputs.

Our approach uses, like in the WDF theory, the a b
parameters as input/output signals and implements the

duties of the scattering junction in a new entity called

wavechannel, complying with SystemC conventions for

channels.

To explain its functionality, without loss of generality

we can fix our attention to an N -port in the electrical

domain, described through its port quantities vj and ij ,

j = 1, . . . , N .The relation between electrical and wave

quantities can be obtained from the following definition

of incident (aj) and reflected (bj) wave:

aj = 1

2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1

2

(

vj/
√

Rj − ij
√

Rj

) (2)

so that a2

j − b2

j is the instantaneous power entering

port j and Rj is a normalization resistance. Similar

relationships hold for other domains as well.

B. Wavechannels

Wavechannels are the means by which modules de-

scribed by wave quantities communicate.

Consider a junction between N ports, each with its

own normalization factor Rj . Let v and i be the voltage

0000–0000/00$00.00 c© 2005 IEEE

a1

b1

a3

b3

b2a2

‖ v3

i1 i3

i2

v2

v1

(a) parallel interconnection

a1

b1

a3

b3

b2a2

	
v1 v3

i1

i2

i3

v2

(b) series interconnection

Fig. 2. Wavechannel symbols corresponding to different port
interconnections.

and current vector, respectively, and:
{

Av v = 0

Ai i = 0
(3)

be a complete and minimal set of Kirchhoff’s equations

describing the junction ([Av]ij , [Ai]ij ∈ {0,±1}). We

maintain that letting:

Ax = Av diag
k=1,...,N

Rk and Ay = Ai diag
k=1,...,N

1/Rk

(4)

the scattering matrix S (such that a = S b), by substi-

tuting the inverse of (2) and (4) into (3), becomes:

S =

[

Ax

Ay

]

−1 [

−Ax

Ay

]

(5)

where b are the waves reflected by modules and thus

entering the junction, whence a are scattered back from

the junction to the modules thereby interconnected.

The above formulation can be used for any kind of

junction.

C. SystemC class library

To let the implementation of systems by means of

analog blocks described with wave quantities, a number

of templates and classes have been designed: a new kind

of port to let modules communicate via wave quantities

(ab port), the wavechannel that can interconnect them

and that does the real computation of the scattering that

occures at junctions (ab signal), and a template base

class (wave module) that extends analog module

taking care of handling sensitivity lists and port decla-

rations.

Ports expose an interface that allows users to read the

incident wave value and to report (write) the reflected

wave value. Of course, in the same wave module, they

can freely be mixed with standard SystemC ports and,

in the same design, istantaneous analog modules, SFG

switch1

switch2

bridge
mains

rectified

shunt
current comparator load

connectorsource

filter

‖‖

	

Fig. 3. Self-oscillating half-bridge inverter: SystemC modules and
wavechannels interconnection diagram.

analog modules (analog module), and wave modules

(wave module) can be used.

To ease the implementation of complex systems with

SysytemC-WMS, a number of templates and classes of

linear and nonlinear modules have been provided.

III. APPLICATION EXAMPLES

As an example of a possible application of SystemC-

WMS to a real problem a self-oscillating half-bridge

(HB) inverter has been chosen. The self-oscillating HB is

made up of a half-bridge provided with positive feedback

carried out by sensing the load current with a current

comparator. The inverter is used to delivery power from

a DC source to an AC load, constituted by an RLC series.

The main components of the circuit are the switches,

the Graetz’ bridge used to rectify the line voltage, and the

voltage source used to convert stimuli from a standard

SystemC signal or an SFG representation to the wave

representation. All the analog modules are connected

together by means of wavechannels, as shown in Fig. 3.

The switch module models the behavior of an ideal

switch, like an MOS switch with zero on resistance,

coupled in parallel with a bypass ideal diode, and with

an additional logical input to control the switch.

The full library and other application examples, are

available from the SystemC-WMS web site [4].

A. Simulation results

The circuits has been simulated using the SystemC-

WMS, using a fourth-order Adams-Moulton predictor-

corrector ODE solver, taking 4.064s on a 1 GHz

Pentium-M computer. In particular the self oscillating

bridge has been simulated during power-on functioning.

After a 200µs of transient, an abruput change from

80 µH to 40 µH of the inductance of the load has been

imposed to simulate a load change.

Results are shown in Figs. 4, where the load current

is plotted as a function of time.

-80

-60

-40

-20

 0

 20

 40

 60

 80

400350300250200150500

i(
lo

a
d
)

[A
]

time [us]

Fig. 4. Simulation of the current into the load.

IV. CONCLUSION

The increasing complexity of systems and circuits

ask for an easy way to model and simulate the overall

behavior of a complex system spanning multiple do-

mains. In order for SystemC to be able to cope with

these requirements, an extension aimed at allowing the

modeling and simulation of analog circuits is mandatory.

This work proposes an effective, and still not exces-

sively complex framework, that simplify the modeling

of the interaction between analog models belonging to

heterogeneous domains, as well as model reuse. By

using power waves as standard input/output signals for

analog modules, these can be independently modeled

and freely interconnected together in arbitrary topologies

without having to deal with complex interface com-

patibility issues. Moreover, this allows for a uniform

treatment of heterogeneous domains, thus paving the way

to the development of truly generic and reusable model

libraries.

REFERENCES

[1] The Open SystemC Initiative, (OSCI), “SystemC documenta-
tion,” online, http://www.systemc.org.

[2] K. Einwich, “Analog mixed signal extensions for SystemC,”
http://mixsigc.eas.iis.fhg.de, White paper and proposal for the
foundation of the SystemC-AMS OSCI Working Group, 2002.

[3] K. Kurokawa, “Power waves and the scattering matrix,” IEEE

Trans. Microwave Theory Tech., vol. 13, no. 2, pp. 194–202,
Mar. 1965.

[4] G. Biagetti, M. Conti, and S. Orcioni, “SystemC-WMS home
page,” online, http://www.deit.univpm.it/systemc-wms/.

SystemC-WMS:
A Wave Mixed Signal Simulator

Simone Orcioni
Giorgio Biagetti, Massimo Conti

DEIT, Dipartimento di Elettronica, Intelligenza artificiale e Telecomunicazioni
Università Politecnica delle Marche

C/C++-Based Modelling
of Embedded Mixed-Signal Systems

Simone Orcioni (DEIT) SystemC-WMS 1 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 2 / 41

State of the Art

Simulation of heterogeneous systems comprising analog parts:

SystemC-AMS (Analog & Mixed Signal)

Modeling with block diagrams and directed signals

Only linear systems can be modeled up to now

Synchronous Data Flow MoC

It is an OSCI effort

SystemC-WMS (Wave Mixed Signal)

Wave theory-based “analog interfaces” used to interconnect blocks
and automatically account for load effects

Any locally-ODE nonlinear system can be modeled

Automatic variable-time step ODE solver

Fully compatible with SystemC-2.2.

Simone Orcioni (DEIT) SystemC-WMS 3 / 41

State of the Art

Simulation of heterogeneous systems comprising analog parts:

SystemC-AMS (Analog & Mixed Signal)

Modeling with block diagrams and directed signals

Only linear systems can be modeled up to now

Synchronous Data Flow MoC

It is an OSCI effort

SystemC-WMS (Wave Mixed Signal)

Wave theory-based “analog interfaces” used to interconnect blocks
and automatically account for load effects

Any locally-ODE nonlinear system can be modeled

Automatic variable-time step ODE solver

Fully compatible with SystemC-2.2.

Simone Orcioni (DEIT) SystemC-WMS 3 / 41

State of the Art

Simulation of heterogeneous systems comprising analog parts:

SystemC-AMS (Analog & Mixed Signal)

Modeling with block diagrams and directed signals

Only linear systems can be modeled up to now

Synchronous Data Flow MoC

It is an OSCI effort

SystemC-WMS (Wave Mixed Signal)

Wave theory-based “analog interfaces” used to interconnect blocks
and automatically account for load effects

Any locally-ODE nonlinear system can be modeled

Automatic variable-time step ODE solver

Fully compatible with SystemC-2.2.

Simone Orcioni (DEIT) SystemC-WMS 3 / 41

State of the Art

Simulation of heterogeneous systems comprising analog parts:

SystemC-AMS (Analog & Mixed Signal)

Modeling with block diagrams and directed signals

Only linear systems can be modeled up to now

Synchronous Data Flow MoC

It is an OSCI effort

SystemC-WMS (Wave Mixed Signal)

Wave theory-based “analog interfaces” used to interconnect blocks
and automatically account for load effects

Any locally-ODE nonlinear system can be modeled

Automatic variable-time step ODE solver

Fully compatible with SystemC-2.2.

Simone Orcioni (DEIT) SystemC-WMS 3 / 41

State of the Art

Simulation of heterogeneous systems comprising analog parts:

SystemC-AMS (Analog & Mixed Signal)

Modeling with block diagrams and directed signals

Only linear systems can be modeled up to now

Synchronous Data Flow MoC

It is an OSCI effort

SystemC-WMS (Wave Mixed Signal)

Wave theory-based “analog interfaces” used to interconnect blocks
and automatically account for load effects

Any locally-ODE nonlinear system can be modeled

Automatic variable-time step ODE solver

Fully compatible with SystemC-2.2.

Simone Orcioni (DEIT) SystemC-WMS 3 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 4 / 41

High Level Modelling of Analog Modules

Modelling with nonlinear state space equations
{

ẋ = f(x,u)
y = g(x,u)

x state

u input

y output

Simone Orcioni (DEIT) SystemC-WMS 5 / 41

High Level Modelling of Analog Modules

Modelling with nonlinear state space equations
{

ẋ = f(x,u)
y = g(x,u)

x state

u input

y output

This description is not valid for

DAE systems

conservative-law systems

Most systems can be described as locally ODE, globally DAE

Simone Orcioni (DEIT) SystemC-WMS 5 / 41

High Level Modelling of Analog Modules

Modelling with nonlinear state space equations
{

ẋ = f(x,u)
y = g(x,u)

x state

u input

y output

This description is not valid for

DAE systems

conservative-law systems

Most systems can be described as locally ODE, globally DAE

Simone Orcioni (DEIT) SystemC-WMS 5 / 41

High Level Modelling of Analog Modules

Modelling with nonlinear state space equations
{

ẋ = f(x,u)
y = g(x,u)

x state

u input

y output

This description is not valid for

DAE systems

conservative-law systems

Most systems can be described as locally ODE, globally DAE

Simone Orcioni (DEIT) SystemC-WMS 5 / 41

High Level Modelling of Analog Modules

Modelling with nonlinear state space equations
{

ẋ = f(x,u)
y = g(x,u)

x state

u input

y output

This description is not valid for

DAE systems

conservative-law systems

Most systems can be described as locally ODE, globally DAE

Simone Orcioni (DEIT) SystemC-WMS 5 / 41

High Level Modelling of Analog Modules

Modelling with nonlinear state space equations
{

ẋ = f(x,u)
y = g(x,u)

x state

u input

y output

Modelling of a 2-port with voltage and current as input/output signals

v1

i1

v2

i2

{

ẋ = f(x, v)
i = g(x, v)

Simone Orcioni (DEIT) SystemC-WMS 5 / 41

Modelling of Analog Modules Using Voltage and Current

Two different modules that can be cascaded

i1

v1v2

i2

v2

i2

v1

i1
M2M1

In non-SFG no
physical clue
helps in choosing
input/output
quantities

It would not be possible to connect them in series, parallel, or cascade
them

i1

v1v2

i2

v2

i2

v1

i1
M2M1

i1

v1

i2

v2

M2

Some complex
adaptor is
needed to tie
together the
output voltages

Simone Orcioni (DEIT) SystemC-WMS 6 / 41

Modelling of Analog Modules Using Voltage and Current

Two different modules that can be cascaded

i1

v1v2

i2

v2

i2

v1

i1
M2M1

In non-SFG no
physical clue
helps in choosing
input/output
quantities

It would not be possible to connect them in series, parallel, or cascade
them

i1

v1v2

i2

v2

i2

v1

i1
M2M1

i1

v1

i2

v2

M2

Some complex
adaptor is
needed to tie
together the
output voltages

Simone Orcioni (DEIT) SystemC-WMS 6 / 41

Modelling of Analog Modules Using Voltage and Current

Two different modules that can be cascaded

i1

v1v2

i2

v2

i2

v1

i1
M2M1

In non-SFG no
physical clue
helps in choosing
input/output
quantities

It would not be possible to connect them in series, parallel, or cascade
them

i1

v1v2

i2

v2

i2

v1

i1
M2M1

i1

v1

i2

v2

M2

Some complex
adaptor is
needed to tie
together the
output voltages

Simone Orcioni (DEIT) SystemC-WMS 6 / 41

Modelling of Analog Modules Using Voltage and Current

Two different modules that can be cascaded

i1

v1v2

i2

v2

i2

v1

i1
M2M1

In non-SFG no
physical clue
helps in choosing
input/output
quantities

It would not be possible to connect them in series, parallel, or cascade
them

i1

v1v2

i2

v2

i2

v1

i1
M2M1

i1

v1

i2

v2

M2

Some complex
adaptor is
needed to tie
together the
output voltages

Simone Orcioni (DEIT) SystemC-WMS 6 / 41

a, b Parameter Modelling

Definition (Incident aj and Reflected bj wave)

j vj

ij

bj

j
aj

aj = 1
2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1
2

(

vj/
√

Rj − ij
√

Rj

)

a2
j − b2

j is the instantaneous power entering port j

Rj is a normalization resistance

Models can easily be derived from analogous models based on voltage
and current;

Every device that possess a scatter-matrix representation can be
modeled in this way

Simone Orcioni (DEIT) SystemC-WMS 7 / 41

a, b Parameter Modelling

Definition (Incident aj and Reflected bj wave)

j vj

ij

bj

j
aj

aj = 1
2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1
2

(

vj/
√

Rj − ij
√

Rj

)

a2
j − b2

j is the instantaneous power entering port j

Rj is a normalization resistance

Models can easily be derived from analogous models based on voltage
and current;

Every device that possess a scatter-matrix representation can be
modeled in this way

Simone Orcioni (DEIT) SystemC-WMS 7 / 41

a, b Parameter Modelling

Definition (Incident aj and Reflected bj wave)

j vj

ij

bj

j
aj

aj = 1
2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1
2

(

vj/
√

Rj − ij
√

Rj

)

a2
j − b2

j is the instantaneous power entering port j

Rj is a normalization resistance

Models can easily be derived from analogous models based on voltage
and current;

Every device that possess a scatter-matrix representation can be
modeled in this way

Simone Orcioni (DEIT) SystemC-WMS 7 / 41

a, b Parameter Modelling

Definition (Incident aj and Reflected bj wave)

j vj

ij

bj

j
aj

aj = 1
2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1
2

(

vj/
√

Rj − ij
√

Rj

)

a2
j − b2

j is the instantaneous power entering port j

Rj is a normalization resistance

Models can easily be derived from analogous models based on voltage
and current;

Every device that possess a scatter-matrix representation can be
modeled in this way

Simone Orcioni (DEIT) SystemC-WMS 7 / 41

a, b Parameter Modelling

Definition (Incident aj and Reflected bj wave)

j vj

ij

bj

j
aj

aj = 1
2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1
2

(

vj/
√

Rj − ij
√

Rj

)

a2
j − b2

j is the instantaneous power entering port j

Rj is a normalization resistance

Models can easily be derived from analogous models based on voltage
and current;

Every device that possess a scatter-matrix representation can be
modeled in this way

Simone Orcioni (DEIT) SystemC-WMS 7 / 41

Modelling of Analog Modules Using Wave Quantities

Electrical port representation using wave quantities

j vj

ij

bj

j
aj a is always the input and

b the output of a port

Solution to the interconnection problem by a wave adaptor

M1 M2

M2

b1

a1

b2

a2

b1

a1

b2

a2

b2

a2

b1

a1

‖
A simple and generic
wave adaptor can
dispatch waves to the
modules thereby
interconnected

Simone Orcioni (DEIT) SystemC-WMS 8 / 41

Modelling of Analog Modules Using Wave Quantities

Electrical port representation using wave quantities

j vj

ij

bj

j
aj a is always the input and

b the output of a port

Solution to the interconnection problem by a wave adaptor

M1 M2

M2

b1

a1

b2

a2

b1

a1

b2

a2

b2

a2

b1

a1

‖
A simple and generic
wave adaptor can
dispatch waves to the
modules thereby
interconnected

Simone Orcioni (DEIT) SystemC-WMS 8 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 9 / 41

Wavechannel

Electrical schematic diagram

M2

M2

M1

wave

adaptor

transmission line

analog module analog module

analog module

Simone Orcioni (DEIT) SystemC-WMS 10 / 41

Wavechannel

Electrical schematic diagram

M2

M2M1

analog module analog module

analog module

transmission line

wave

adaptor

A wavechannel can be represented by a junction box connected to ports by
transmission lines

Simone Orcioni (DEIT) SystemC-WMS 10 / 41

Wavechannel

Electrical schematic diagram

M2

M2M1

analog module analog module

analog module

transmission line

wave

adaptor

A wavechannel can be represented by a junction box connected to ports by
transmission lines

Simone Orcioni (DEIT) SystemC-WMS 10 / 41

Wavechannel

Electrical schematic diagram

M2

M2M1

analog module analog module

analog module

transmission line

wave

adaptor

Propagation delay can be excluded ⇒ Delay-free loops ⇒ locally ODE,
globally DAE system

Simone Orcioni (DEIT) SystemC-WMS 10 / 41

Wavechannel

Electrical schematic diagram

M2

M2M1

analog module analog module

analog module

transmission line

wave

adaptor

Fixed-point solution of DAE ⇔ Solution of Maxwell’s equations in quasi-
static conditions ⇔ Kirchhoff’s equations

Simone Orcioni (DEIT) SystemC-WMS 10 / 41

Wavechannels

Consider a junction between N ports

Let v and i be the voltage and current vector, respectively, and:

{

Av v = 0

Ai i = 0

be a complete and minimal set of Kirchhoff’s equations describing the
junction, where [Av]ij and [Ai]ij are matrices of 0 and ±1. Letting:

Ax = Av diag
k=1,...,N

Rk and Ay = Ai diag
k=1,...,N

1/Rk

the scattering matrix S (such that a = Sb), becomes:

S =

[

Ax

Ay

]

−1 [

−Ax

Ay

]

Simone Orcioni (DEIT) SystemC-WMS 11 / 41

Parallel wavechannel

N
∑

j=1

ij = 0

v1 = v2 = · · · = vN

a1

b1

a3

b3

b2a2

‖ v3

i1 i3

i2

v2

v1

which leads to:

Av =











1 −1 0 · · · 0
0 1 −1 0 · · ·

...
0 0 · · · 1 −1











Ai =
[

1 1 1 · · · 1
]

N = 1 ⇒ open circuit

Simone Orcioni (DEIT) SystemC-WMS 12 / 41

Series wavechannel

N
∑

j=1

vj = 0

i1 = i2 = · · · = iN

v1 v3

i1

i2

i3

v2

a1

b1

a3

b3

b2a2

	

which leads to:

Av =
[

1 1 1 · · · 1
]

Ai =











1 −1 0 · · · 0
0 1 −1 0 · · ·

...
0 0 · · · 1 −1











N = 1 ⇒ shunt

Simone Orcioni (DEIT) SystemC-WMS 13 / 41

Bridge — Half-bridge

a4

b4

a3

b3
a2

b2

a6

a1
b1

b6

a5

b5
a1

b1

a4

b4
a3

b3

a2

b2

Av =





1 1 −1 0 0 0
0 0 1 0 −1 −1
1 0 0 1 −1 0





Ai =





1 0 1 0 1 0
0 1 1 0 0 1

−1 1 0 1 0 0





Av =

[

1 −1 −1 0
0 0 1 −1

]

Ai =

[

1 1 0 0
0 1 −1 −1

]

Simone Orcioni (DEIT) SystemC-WMS 14 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 15 / 41

SystemC-WMS class library

a,b parameter modelling diagram

M1 M2

M2

b1

a1

b2

a2

b1

a1

b2

a2

b2

a2

b1

a1

‖

Simone Orcioni (DEIT) SystemC-WMS 16 / 41

SystemC-WMS class library

SystemC-WMS class mapping

M1 M2

ab signal if

ab port

wave module wave module

M2

wave module

C

ab signal

Simone Orcioni (DEIT) SystemC-WMS 16 / 41

SystemC-WMS class library

SystemC-WMS class mapping

M1 M2

ab port

wave module wave module

M2

wave module

C

ab signal

ab signal if

Simone Orcioni (DEIT) SystemC-WMS 16 / 41

SystemC-WMS class library

SystemC-WMS class mapping

M1 M2

ab signal if

wave module wave module

M2

wave module

C

ab signal

ab port

Simone Orcioni (DEIT) SystemC-WMS 16 / 41

SystemC-WMS class library

SystemC-WMS class mapping

ab signal if

ab port C

ab signalwave module

M1

wave module

M2

wave module

M2

Simone Orcioni (DEIT) SystemC-WMS 16 / 41

SystemC-WMS class library

SystemC-WMS class mapping

M1 M2

ab port

wave module wave module

M2

wave module

ab signal

C

ab signal if

Simone Orcioni (DEIT) SystemC-WMS 16 / 41

Wave module

Example (wave module)
struct example : wave_module <1, electrical>, analog_module

{

// state variable x is inherited from analog_module

void field (double *var) const;

void calculus ();

SC_CTOR(example) : analog_module(...)

{

SC_THREAD(calculus);

sensitive << activation;

}

};

Simone Orcioni (DEIT) SystemC-WMS 17 / 41

Wave module

Example (wave module)
struct example : wave_module <1, electrical>, analog_module

{

// state variable x is inherited from analog_module

void field (double *var) const;

void calculus ();

SC_CTOR(example) : analog_module(...)

{

SC_THREAD(calculus);

sensitive << activation;

}

};

Simone Orcioni (DEIT) SystemC-WMS 17 / 41

Wave module

Example (wave module)
struct example : wave_module <1, electrical>, analog_module

{

// state variable x is inherited from analog_module

void field (double *var) const;

void calculus ();

SC_CTOR(example) : analog_module(...)

{

SC_THREAD(calculus);

sensitive << activation;

}

};

Simone Orcioni (DEIT) SystemC-WMS 17 / 41

Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}

Simone Orcioni (DEIT) SystemC-WMS 18 / 41

Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}

Simone Orcioni (DEIT) SystemC-WMS 18 / 41

Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}

Simone Orcioni (DEIT) SystemC-WMS 18 / 41

Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}

Simone Orcioni (DEIT) SystemC-WMS 18 / 41

Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}

Simone Orcioni (DEIT) SystemC-WMS 18 / 41

Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}

Simone Orcioni (DEIT) SystemC-WMS 18 / 41

Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}

Simone Orcioni (DEIT) SystemC-WMS 18 / 41

Wave module

Example (nature)
struct electrical : nature <double>

{

static const char *across () {return "voltage";}

static const char *through () {return "current";}

};

struct mechanical : nature <double>

{

static const char *across () {return "speed";}

static const char *through () {return "force";}

};

struct acoustical : nature <double>

{

static const char *across () {return "pressure";}

static const char *through () {return "volume velocity";}

};

Simone Orcioni (DEIT) SystemC-WMS 19 / 41

Computation

read incident wave a

request update

b 6= bold

system is stable,
perform one ODE step

channel
duties

module
duties

compute scattering a = Sb

notify activation
(delta cycle: request evaluate)

|a − aold| > ε

compute reflected wave b

evaluate phase

no

yes

update phase

no

yes

wait

task performed by the step() call
inside of module’s main thread loop

Figure: Sketch of the execution flow inside modules and wavechannels.

Simone Orcioni (DEIT) SystemC-WMS 20 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 21 / 41

Self-oscillating half-bridge

Example
switch1

switch2

load current comparator

filter

bridge

Electrical schematic diagram

Simone Orcioni (DEIT) SystemC-WMS 22 / 41

Self-oscillating half-bridge

Example

load

switch1

diode bridge
mains shunt

half bridge

switch2

rectified

connector

current comparator

source

filter

‖ 	‖

SystemC-WMS modules and wavechannels interconnection diagram

Simone Orcioni (DEIT) SystemC-WMS 23 / 41

Self-oscillating half-bridge

Example

int sc_main (int argc, char *argv[])

{

sc_core::sc_signal <bool> compout, pulse1, pulse2;

sc_core::sc_signal <electrical::wave_type> in;

ab_signal <electrical, parallel> mains, rectified;

ab_signal <electrical, series> shunt;

ab_signal <electrical, half_bridge> halfbridge;

generator <electrical::wave_type> signal_source("SOURCE1",

sine(sqrt(2) * 230 V, 50 Hz, pi/2));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);

Simone Orcioni (DEIT) SystemC-WMS 24 / 41

Self-oscillating half-bridge

Example

int sc_main (int argc, char *argv[])

{

sc_core::sc_signal <bool> compout, pulse1, pulse2;

sc_core::sc_signal <electrical::wave_type> in;

ab_signal <electrical, parallel> mains, rectified;

ab_signal <electrical, series> shunt;

ab_signal <electrical, half_bridge> halfbridge;

generator <electrical::wave_type> signal_source("SOURCE1",

sine(sqrt(2) * 230 V, 50 Hz, pi/2));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);

Simone Orcioni (DEIT) SystemC-WMS 24 / 41

Self-oscillating half-bridge

Example

int sc_main (int argc, char *argv[])

{

sc_core::sc_signal <bool> compout, pulse1, pulse2;

sc_core::sc_signal <electrical::wave_type> in;

ab_signal <electrical, parallel> mains, rectified;

ab_signal <electrical, series> shunt;

ab_signal <electrical, half_bridge> halfbridge;

generator <electrical::wave_type> signal_source("SOURCE1",

sine(sqrt(2) * 230 V, 50 Hz, pi/2));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);

Simone Orcioni (DEIT) SystemC-WMS 24 / 41

Self-oscillating half-bridge

Example

int sc_main (int argc, char *argv[])

{

sc_core::sc_signal <bool> compout, pulse1, pulse2;

sc_core::sc_signal <electrical::wave_type> in;

ab_signal <electrical, parallel> mains, rectified;

ab_signal <electrical, series> shunt;

ab_signal <electrical, half_bridge> halfbridge;

generator <electrical::wave_type> signal_source("SOURCE1",

sine(sqrt(2) * 230 V, 50 Hz, pi/2));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);

Simone Orcioni (DEIT) SystemC-WMS 24 / 41

Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41

Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41

Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41

Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41

Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41

Self-oscillating half-bridge

Example

RLCs_2sm <electrical> load1("LOAD1", 4 ohm, 80 uH, 740 nF);

load1(halfbridge->load, shunt);

comparator <electrical, delayed> cmp("CMP",2e-8,cfg::through);

cmp(shunt, compout);

inverter inv1("INV1");

inv1(compout,pulse1);

sc_core::sc_start(sc_core::sc_time(400,sc_core::SC_US));

return 0;

}

Simone Orcioni (DEIT) SystemC-WMS 26 / 41

Self-oscillating half-bridge

Example

RLCs_2sm <electrical> load1("LOAD1", 4 ohm, 80 uH, 740 nF);

load1(halfbridge->load, shunt);

comparator <electrical, delayed> cmp("CMP",2e-8,cfg::through);

cmp(shunt, compout);

inverter inv1("INV1");

inv1(compout,pulse1);

sc_core::sc_start(sc_core::sc_time(400,sc_core::SC_US));

return 0;

}

Simone Orcioni (DEIT) SystemC-WMS 26 / 41

Self-oscillating half-bridge

Example

RLCs_2sm <electrical> load1("LOAD1", 4 ohm, 80 uH, 740 nF);

load1(halfbridge->load, shunt);

comparator <electrical, delayed> cmp("CMP",2e-8,cfg::through);

cmp(shunt, compout);

inverter inv1("INV1");

inv1(compout,pulse1);

sc_core::sc_start(sc_core::sc_time(400,sc_core::SC_US));

return 0;

}

Simone Orcioni (DEIT) SystemC-WMS 26 / 41

Self-oscillating half-bridge

Example

RLCs_2sm <electrical> load1("LOAD1", 4 ohm, 80 uH, 740 nF);

load1(halfbridge->load, shunt);

comparator <electrical, delayed> cmp("CMP",2e-8,cfg::through);

cmp(shunt, compout);

inverter inv1("INV1");

inv1(compout,pulse1);

sc_core::sc_start(sc_core::sc_time(400,sc_core::SC_US));

return 0;

}

Simone Orcioni (DEIT) SystemC-WMS 26 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 27 / 41

Simulation results

Current into the RLC load during power-on

-80

-60

-40

-20

0

20

40

60

80

400350300250200150100500

i(
lo

ad
)

[A
]

time [µs]

After a 200µs, an abruput change from 80 µH to 40 µH of the inductance
of the load has been imposed.

Simone Orcioni (DEIT) SystemC-WMS 28 / 41

Simulation results

Current into the RLC load during power-on

-60

-40

-20

0

20

40

60

400350300250200150100500

i(
lo

ad
)

[A
]

time [µs]

A sweep of the inductance of the load has been imposed changing
continuosly the oscillating frequency.

Simone Orcioni (DEIT) SystemC-WMS 29 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 30 / 41

Full Digital controlled DC-DC buck-converter

Example

ADC

COMP.

switch1
source filter

load

−

+

Σ∆

Electrical schematic diagram

Simone Orcioni (DEIT) SystemC-WMS 31 / 41

Full Digital controlled DC-DC buck-converter

Example

ADC

COMP.

digital

load_w

switch1source
source_w

loadfilter
filter_w

−

+

Σ∆

‖ ‖‖

Buck-converter: SystemC-WMS modules and wavechannels
interconnection diagram

Simone Orcioni (DEIT) SystemC-WMS 32 / 41

Full Digital controlled DC-DC buck-converter

Example

int sc_main (int argc, char *argv[])

{

sc_core::sc_signal <electrical::wave_type> in;

sc_core::sc_signal <sc_fixed_fast<13,4> > s1;

sc_core::sc_signal <sc_int<13> > s2;

sc_core::sc_signal <bool> contr1;

const sc_time t_PERIOD1 (5, SC_US);

const sc_time t_PERIOD2 (1.25, SC_US);

sc_core::sc_clock clk1("clk1", t_PERIOD1);

sc_core::sc_clock clk2("clk2", t_PERIOD2);

sc_core::sc_trace_file *f = create_tab_trace_file("LOAD");

sc_core::sc_trace_file *f2 = create_tab_trace_file("LINE1");

out.trace(f, "OUT");

line1.trace(f2, "LINE1");

Simone Orcioni (DEIT) SystemC-WMS 33 / 41

Full Digital controlled DC-DC buck-converter

Example
ab_signal <electrical, parallel> mains, line1, out;

generator <electrical::wave_type>

signal_source("SOURCE1", dc (14.4 V));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);

onoff_switchd_2s switch1("SWITCH1");

switch1(line1,mains, contr1);

diode diode1("DIODE1");

diode1(-line1);

LPF_II filter("FILTER", 50 uF, 50 uH);

filter(line1,out);

Simone Orcioni (DEIT) SystemC-WMS 34 / 41

Full Digital controlled DC-DC buck-converter

Example
ab_signal <electrical, parallel> mains, line1, out;

generator <electrical::wave_type>

signal_source("SOURCE1", dc (14.4 V));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);

onoff_switchd_2s switch1("SWITCH1");

switch1(line1,mains, contr1);

diode diode1("DIODE1");

diode1(-line1);

LPF_II filter("FILTER", 50 uF, 50 uH);

filter(line1,out);

Simone Orcioni (DEIT) SystemC-WMS 34 / 41

Full Digital controlled DC-DC buck-converter

Example

R_load load("LOAD", 4.46 ohm);

load(out);

ADc adc1("ADC1");

adc1(out, s1, clk1);

compens comp1("COMP1");

comp1(s1, s2, clk1);

sigmadelta sd("SD");

sd(s2, clk2, contr1);

float sim_end;

sscanf(argv[1],"%f",&sim_end);

sc_core::sc_start(sim_end, sc_core::SC_SEC);

close_tab_trace_file(f);

close_tab_trace_file(f2);

return 0;

Simone Orcioni (DEIT) SystemC-WMS 35 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 36 / 41

Simulation results

Output voltage

0

2.5

5

543210

v
O

(V
)

t (ms)

4.98

4.97

4.96
54.984.964.94

v
O

(V
)

t (ms)

The load voltage during power-on and the load voltage in steady-state,

Simone Orcioni (DEIT) SystemC-WMS 37 / 41

Simulation results

Current into inductor

1.5

1.2

0.9

54.984.964.94

i L
(A

)

t (ms)

14

7

0

54.984.964.94

i c
h
o
p
p
ed

(V
)

t (ms)

The current in the inductor and the chopped voltage.

Simone Orcioni (DEIT) SystemC-WMS 38 / 41

Outline

1 Description and Modelling of Analog Modules in SystemC
Modelling of Analog Modules Using Wave Quantities
Wavechannel
SystemC-WMS Class Library

2 Application examples
Oscillator Schematics and SystemC Implementation
Oscillator Simulation Results
DC–DC Converter Schematics
DC–DC Converter Simulation Results
References and Conclusions

Simone Orcioni (DEIT) SystemC-WMS 39 / 41

References and Conclusions

References

Giorgio Biagetti, Marco Caldari, Massimo Conti, and Simone Orcioni.

Extending SystemC to analog modeling and simulation.

In Christoph Grimm, editor, Languages for system specification, CHDL, chapter 15,

pages 229–242. Kluwer Academic Publishers, 2004.

Simone Orcioni, Giorgio Biagetti, and Massimo Conti.

Systemc-WMS: Mixed signal simulation based on wave exchanges.

In Alain Vachoux, editor, Applications of Specification and Design Languages for

SoCs, chapter 3, pages 43–59. Springer, 2006.

Simone Orcioni (DEIT) SystemC-WMS 40 / 41

Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/

Simone Orcioni (DEIT) SystemC-WMS 41 / 41

Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/

Simone Orcioni (DEIT) SystemC-WMS 41 / 41

Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/

Simone Orcioni (DEIT) SystemC-WMS 41 / 41

Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/

Simone Orcioni (DEIT) SystemC-WMS 41 / 41

Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/

Simone Orcioni (DEIT) SystemC-WMS 41 / 41

Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/

Simone Orcioni (DEIT) SystemC-WMS 41 / 41

Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/

Simone Orcioni (DEIT) SystemC-WMS 41 / 41

	C/C++ based Languages Session
	SystemC-WMS: A Wave Mixed Signal Simulator
	Description and Modelling of Analog Modules in SystemC
	Modelling of Analog Modules Using Wave Quantities
	Wavechannel
	SystemC-WMS Class Library

	Application examples
	Oscillator Schematics and SystemC Implementation
	Oscillator Simulation Results
	DC--DC Converter Schematics
	DC--DC Converter Simulation Results
	References and Conclusions

