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SystemC-WMS:Wave Mixed Signal Simulator
Simone Orcioni, Giorgio Biagetti, and Massimo Conti

Abstract— This work presents a methodology for extend-

ing SystemC to mixed signal heterogeneous systems. To this

end, a method for modelling analog modules using wave

quantities is proposed, and a new kind of port and channel

have been defined. This class library is plugged directly

on top of the standard SystemC kernel, so as to allow

a seamless integration with the pre-existing simulation

environment.

I. INTRODUCTION

S
YSTEMC is an emerging tool for the description

and simulation of hardware and software at system

level [1], and it is not rare that this high level of

abstraction could require the interfacing of both digital

and analog parts. To this aim it has been proposed [2] to

constitute an Open SystemC Initiative (OSCI) Working

Group devoted to the development of an extension of

SystemC to mixed-signal simulation: SystemC-AMS.

The basic SystemC methodology [1] makes use of

modules and interfaces to describe complex systems.

Modules communicate through interfaces, implemented

in a channel, by calling methods in the channel. Con-

versely, events in the channel can activate modules con-

nected to the channel itself. The present work proposes a

methodology for the description of analog blocks using

only such instruments and libraries. Taking advantage

of this communication scheme and of the underlying

SystemC kernel, we implement the various analog parts

of a system as analog modules, which communicate by

exchanging energy waves through wavechannel inter-

faces.

II. MODELLING OF ANALOG MODULES IN SYSTEMC

The main goal of our methodology is to describe each

analog module, which comprises a system, by means

of a system of nonlinear ordinary differential equations

(ODE) of the following type:
{

ẋ = f(x,u)
y = g(x, u)

(1)
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where f and g are vector expressions describing system

dynamics, while x, y and u are state, output and input

vectors, respectively. Equation (1) should describe a

part of the system under consideration, like an N -port

modelled at circuital level, or it may represent a high

level macromodel describing the part functionality.

A. Module representation based on wave-exchange

The use of the incident/reflected wave model [3]

greatly simplify the problems of taking into account the

connection between modules, since it can be mandated

that modules use incident waves as inputs and produce

reflected waves as outputs.

Our approach uses, like in the WDF theory, the a b
parameters as input/output signals and implements the

duties of the scattering junction in a new entity called

wavechannel, complying with SystemC conventions for

channels.

To explain its functionality, without loss of generality

we can fix our attention to an N -port in the electrical

domain, described through its port quantities vj and ij ,

j = 1, . . . , N .The relation between electrical and wave

quantities can be obtained from the following definition

of incident (aj) and reflected (bj) wave:

aj = 1

2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1

2

(

vj/
√

Rj − ij
√

Rj

) (2)

so that a2

j − b2

j is the instantaneous power entering

port j and Rj is a normalization resistance. Similar

relationships hold for other domains as well.

B. Wavechannels

Wavechannels are the means by which modules de-

scribed by wave quantities communicate.

Consider a junction between N ports, each with its

own normalization factor Rj . Let v and i be the voltage
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Fig. 2. Wavechannel symbols corresponding to different port
interconnections.

and current vector, respectively, and:
{

Av v = 0

Ai i = 0
(3)

be a complete and minimal set of Kirchhoff’s equations

describing the junction ([Av]ij , [Ai]ij ∈ {0,±1}). We

maintain that letting:

Ax = Av diag
k=1,...,N

Rk and Ay = Ai diag
k=1,...,N

1/Rk

(4)

the scattering matrix S (such that a = S b), by substi-

tuting the inverse of (2) and (4) into (3), becomes:

S =

[

Ax

Ay

]

−1 [

−Ax

Ay

]

(5)

where b are the waves reflected by modules and thus

entering the junction, whence a are scattered back from

the junction to the modules thereby interconnected.

The above formulation can be used for any kind of

junction.

C. SystemC class library

To let the implementation of systems by means of

analog blocks described with wave quantities, a number

of templates and classes have been designed: a new kind

of port to let modules communicate via wave quantities

(ab port), the wavechannel that can interconnect them

and that does the real computation of the scattering that

occures at junctions (ab signal), and a template base

class (wave module) that extends analog module

taking care of handling sensitivity lists and port decla-

rations.

Ports expose an interface that allows users to read the

incident wave value and to report (write) the reflected

wave value. Of course, in the same wave module, they

can freely be mixed with standard SystemC ports and,

in the same design, istantaneous analog modules, SFG

switch1
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Fig. 3. Self-oscillating half-bridge inverter: SystemC modules and
wavechannels interconnection diagram.

analog modules (analog module), and wave modules

(wave module) can be used.

To ease the implementation of complex systems with

SysytemC-WMS, a number of templates and classes of

linear and nonlinear modules have been provided.

III. APPLICATION EXAMPLES

As an example of a possible application of SystemC-

WMS to a real problem a self-oscillating half-bridge

(HB) inverter has been chosen. The self-oscillating HB is

made up of a half-bridge provided with positive feedback

carried out by sensing the load current with a current

comparator. The inverter is used to delivery power from

a DC source to an AC load, constituted by an RLC series.

The main components of the circuit are the switches,

the Graetz’ bridge used to rectify the line voltage, and the

voltage source used to convert stimuli from a standard

SystemC signal or an SFG representation to the wave

representation. All the analog modules are connected

together by means of wavechannels, as shown in Fig. 3.

The switch module models the behavior of an ideal

switch, like an MOS switch with zero on resistance,

coupled in parallel with a bypass ideal diode, and with

an additional logical input to control the switch.

The full library and other application examples, are

available from the SystemC-WMS web site [4].

A. Simulation results

The circuits has been simulated using the SystemC-

WMS, using a fourth-order Adams-Moulton predictor-

corrector ODE solver, taking 4.064s on a 1 GHz

Pentium-M computer. In particular the self oscillating

bridge has been simulated during power-on functioning.

After a 200µs of transient, an abruput change from

80 µH to 40 µH of the inductance of the load has been

imposed to simulate a load change.

Results are shown in Figs. 4, where the load current

is plotted as a function of time.
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Fig. 4. Simulation of the current into the load.

IV. CONCLUSION

The increasing complexity of systems and circuits

ask for an easy way to model and simulate the overall

behavior of a complex system spanning multiple do-

mains. In order for SystemC to be able to cope with

these requirements, an extension aimed at allowing the

modeling and simulation of analog circuits is mandatory.

This work proposes an effective, and still not exces-

sively complex framework, that simplify the modeling

of the interaction between analog models belonging to

heterogeneous domains, as well as model reuse. By

using power waves as standard input/output signals for

analog modules, these can be independently modeled

and freely interconnected together in arbitrary topologies

without having to deal with complex interface com-

patibility issues. Moreover, this allows for a uniform

treatment of heterogeneous domains, thus paving the way

to the development of truly generic and reusable model

libraries.
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High Level Modelling of Analog Modules

Modelling with nonlinear state space equations
{

ẋ = f(x,u)
y = g(x,u)

x state

u input

y output

Modelling of a 2-port with voltage and current as input/output signals

v1

i1

v2

i2

{

ẋ = f(x, v)
i = g(x, v)
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a, b Parameter Modelling

Definition (Incident aj and Reflected bj wave)

j vj

ij

bj

j
aj

aj = 1
2

(

vj/
√

Rj + ij
√

Rj

)

bj = 1
2

(

vj/
√

Rj − ij
√

Rj

)

a2
j − b2

j is the instantaneous power entering port j

Rj is a normalization resistance

Models can easily be derived from analogous models based on voltage
and current;

Every device that possess a scatter-matrix representation can be
modeled in this way
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Wavechannel

Electrical schematic diagram
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Wavechannel

Electrical schematic diagram

M2

M2M1

analog module analog module

analog module

transmission line

wave

adaptor

Fixed-point solution of DAE ⇔ Solution of Maxwell’s equations in quasi-
static conditions ⇔ Kirchhoff’s equations

Simone Orcioni (DEIT) SystemC-WMS 10 / 41



Wavechannels

Consider a junction between N ports

Let v and i be the voltage and current vector, respectively, and:

{

Av v = 0

Ai i = 0

be a complete and minimal set of Kirchhoff’s equations describing the
junction, where [Av]ij and [Ai]ij are matrices of 0 and ±1. Letting:

Ax = Av diag
k=1,...,N

Rk and Ay = Ai diag
k=1,...,N

1/Rk

the scattering matrix S (such that a = Sb), becomes:

S =

[

Ax

Ay

]

−1 [

−Ax

Ay

]
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Parallel wavechannel

N
∑

j=1

ij = 0

v1 = v2 = · · · = vN

a1

b1

a3

b3

b2a2

‖ v3

i1 i3

i2

v2

v1

which leads to:

Av =











1 −1 0 · · · 0
0 1 −1 0 · · ·

...
0 0 · · · 1 −1











Ai =
[

1 1 1 · · · 1
]

N = 1 ⇒ open circuit
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Series wavechannel

N
∑

j=1

vj = 0

i1 = i2 = · · · = iN

v1 v3
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v2

a1
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b2a2

	

which leads to:

Av =
[

1 1 1 · · · 1
]

Ai =











1 −1 0 · · · 0
0 1 −1 0 · · ·

...
0 0 · · · 1 −1











N = 1 ⇒ shunt
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Bridge — Half-bridge
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SystemC-WMS class library

a,b parameter modelling diagram
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Wave module

Example (wave module)
struct example : wave_module <1, electrical>, analog_module

{

// state variable x is inherited from analog_module

void field (double *var) const;

void calculus ();

SC_CTOR(example) : analog_module(...)

{

SC_THREAD(calculus);

sensitive << activation;

}

};
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Wave module

Example (wave module)

void example::field (double *var) const

{

double a = port->read();

var[0] = f(x, a); // evaluate state change

}

void example::calculus ()

{

x = 0; // state initialization here

while (step()) { // perform one ODE solver step

double a = port->read(); // read incident wave here

double b = g(x, a); // compute reflected wave

port->write(b); // and send it out here

}

}
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Wave module

Example (nature)
struct electrical : nature <double>

{

static const char *across () {return "voltage";}

static const char *through () {return "current";}

};

struct mechanical : nature <double>

{

static const char *across () {return "speed";}

static const char *through () {return "force";}

};

struct acoustical : nature <double>

{

static const char *across () {return "pressure";}

static const char *through () {return "volume velocity";}

};
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Computation
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request update
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Figure: Sketch of the execution flow inside modules and wavechannels.
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Self-oscillating half-bridge
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Self-oscillating half-bridge

Example
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Self-oscillating half-bridge

Example

int sc_main (int argc, char *argv[])

{

sc_core::sc_signal <bool> compout, pulse1, pulse2;

sc_core::sc_signal <electrical::wave_type> in;

ab_signal <electrical, parallel> mains, rectified;

ab_signal <electrical, series> shunt;

ab_signal <electrical, half_bridge> halfbridge;

generator <electrical::wave_type> signal_source("SOURCE1",

sine(sqrt(2) * 230 V, 50 Hz, pi/2));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);
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Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41



Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41



Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41



Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41



Self-oscillating half-bridge

Example

ideal_rectifier <electrical> bridge("BRIDGE");

bridge(mains, rectified);

RCs_load line_filter("FILTER", 1 ohm, 5 uF);

line_filter(rectified);

ab_connector <electrical> vdd("VDD");

vdd(halfbridge->mains, rectified);

onoff_switchd switch1("SWITCH1");

switch1(-halfbridge->up,pulse1);

onoff_switchd switch2("SWITCH2");

switch2(-halfbridge->down,compout);

Simone Orcioni (DEIT) SystemC-WMS 25 / 41



Self-oscillating half-bridge

Example

RLCs_2sm <electrical> load1("LOAD1", 4 ohm, 80 uH, 740 nF);

load1(halfbridge->load, shunt);

comparator <electrical, delayed> cmp("CMP",2e-8,cfg::through);

cmp(shunt, compout);

inverter inv1("INV1");

inv1(compout,pulse1);

sc_core::sc_start(sc_core::sc_time(400,sc_core::SC_US));

return 0;

}
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Simulation results

Current into the RLC load during power-on
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After a 200µs, an abruput change from 80 µH to 40 µH of the inductance
of the load has been imposed.
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Full Digital controlled DC-DC buck-converter
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Full Digital controlled DC-DC buck-converter

Example
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Full Digital controlled DC-DC buck-converter

Example

int sc_main (int argc, char *argv[])

{

sc_core::sc_signal <electrical::wave_type> in;

sc_core::sc_signal <sc_fixed_fast<13,4> > s1;

sc_core::sc_signal <sc_int<13> > s2;

sc_core::sc_signal <bool> contr1;

const sc_time t_PERIOD1 (5, SC_US);

const sc_time t_PERIOD2 (1.25, SC_US);

sc_core::sc_clock clk1("clk1", t_PERIOD1);

sc_core::sc_clock clk2("clk2", t_PERIOD2);

sc_core::sc_trace_file *f = create_tab_trace_file("LOAD");

sc_core::sc_trace_file *f2 = create_tab_trace_file("LINE1");

out.trace(f, "OUT");

line1.trace(f2, "LINE1");
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Full Digital controlled DC-DC buck-converter

Example
ab_signal <electrical, parallel> mains, line1, out;

generator <electrical::wave_type>

signal_source("SOURCE1", dc (14.4 V));

signal_source(in);

source <electrical> wave_source("SOURCE2", cfg::across);

wave_source(mains, in);

onoff_switchd_2s switch1("SWITCH1");

switch1(line1,mains, contr1);

diode diode1("DIODE1");

diode1(-line1);

LPF_II filter("FILTER", 50 uF, 50 uH);

filter(line1,out);
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Full Digital controlled DC-DC buck-converter

Example

R_load load("LOAD", 4.46 ohm);

load(out);

ADc adc1("ADC1");

adc1(out, s1, clk1);

compens comp1("COMP1");

comp1(s1, s2, clk1);

sigmadelta sd("SD");

sd(s2, clk2, contr1);

float sim_end;

sscanf(argv[1],"%f",&sim_end);

sc_core::sc_start(sim_end, sc_core::SC_SEC);

close_tab_trace_file(f);

close_tab_trace_file(f2);

return 0;
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Simulation results

Output voltage
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Simulation results

Current into inductor
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Conclusions

SystemC-WMS main features:

High-level simulation and description of mixed-signal systems

Standard analog interface based on power exchange and designed for
model reusability

Seamless integration of complex heterogeneous systems

Both linear and non-linear analog modelling capabilities

Completely build using standard SystemC kernel features

For downloading the source code

◮ SourceForge
http://www.sf.net

◮ SystemC-WMS home page.
http://www.deit.univpm.it/systemc-wms/
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