
Enabling System Level Design 1

GreenSocs Purveyor of fine Open Source
Virtual Platform Technology and Services

Since 2005

Feb 2016
Mark Burton

GreenSocs Virtual Platforms let you imagine, design, develop and test
your embedded application as a whole; size your hardware to reflect
the needs of your software; build your software and hardware
together; debug your software and verify your hardware efficiently.

Enabling System Level Design 2

GreenSocs: Integrated Virtual Platforms

•  GreenSocs® is the industrial leader in integrating different Virtual Platform
solutions

•  Dr Mark Burton is the founder of GreenSocs. Mark has worked for ARM
managing their modeling group. He was the chair of the OSCI TLM WG
and the OCP-IP SLD WG.

•  GreenSocs provided technology behind the TLM-2.0 standard, and the
CCI standard. We continue to be at the heart of SystemC development.

•  GreenSocs is a contributor to QEMU, providing technology to support
multi-thread and reverse execution.

•  GreenSocs has been in business (incorporated in UK and France), and
profitable, since 2005, including within its client base large multi-nationals.

Enabling System Level Design 3

Tool Integration

IP Generation Tools
e.g. Verilog to SystemC
Verilator

Debug Environments
Including eclipse.

Core IP models

SystemC modeling and
integration libraries

Profiling and
Code Coverage

kcachegrind

lcov

Enabling System Level Design 4

Tool Integration

IP Generation Tools
e.g. Verilog to SystemC
Verilator

Debug Environments
Including eclipse.

Core IP models

SystemC modeling and
integration libraries

Profiling and
Code Coverage

kcachegrind

lcov

The Digital ‘plugin’ to COSEDA

Enabling System Level Design 5

COSIDE: Cortex M3 Toplevel

Enabling System Level Design 6

COSIDE: Cortex M3 GreenSocs Modules Library

•  COSIDE provides symbols for the GreenSOCs library models
•  Allows graphical system assembly
•  Automated toplevel netlist generation

Enabling System Level Design 7

COSIDE: Interface modules

•  Own Interface module to communicate between your normal
COSIDE module and the GreenSocs TLM eco system

•  Corresponding Wrapper of the whole Cortex M3 processor exposing

the interface Signals

•  System configuration via LUA file provide through toplevel parameter

Enabling System Level Design 8

COSIDE: Hard- and Software debugging

•  Hardware brake points within the model as well as within the ARM
•  Software Debugging through remote session into the Cortex M3 core

ARM Debugger AMS Debugger

Enabling System Level Design 16

QBox

•  Wraps up Qemu in a TLM2-0 API such that it can be used in
standard SystemC

•  QEMU is a generic and open source virtualizer – it covers
almost all CPU architectures and achieves extremely high
performance.

SystemC

QBox
(qemu)

TLM

QBox In A Box

Enabling System Level Design 17

Qemu: Our Preferred source of CPU models

•  Qemu is the defacto standard Virtualizer.
•  Free and Open Source.
•  It is over 10 years old

•  GreenSocs is a key contributor:
 Reverse execution and Multi-Core TCG Kernel.

•  Regular committers from many organizations

18 1100 43000 1000 989,863
Architectures CPU’s Commits Contributors Lines of code

…

Enabling System Level Design 18

Existing Model database overview:

X86 ARM MIPS Alpha PowerPC SPARC Micro-
blaze

Cold-
fire

Cris SH4 Xtensa

Fast
SW dev
model
(LT)

✔ ✔ ✔

✔

✔

✔

✔

✔

✔

✔

Cycle
Accurate
HW dev
model
(AT)

✔

✔

✔

✔

CPU Family coverage:

Full list (of several hundred) available on GreenSocs.com

Enabling System Level Design 19

Extending Qemu for EDA virtulization

•  MULTI Thread Qemu

•  A massive speed improvement for Qemu to take
advantage of multi-core hosts

•  SystemC integration

•  The ability to mix SystemC models with Qemu.

•  Reverse Execution
•  The ability to find a bug, and step backwards (in time)

to find the source of the bug.
•  GreenSocs has a fast implementation which is

compatible with SystemC.

•  Instruction counting and analysis features
•  Enhanced counting mechanisms for memory accesses

and instruction counting

Processors Communication Devices

Command and control
Back-end

Enabling System Level Design 22

Quick Benchmark Results for MTTCG

1
2

4

0
5

10
15
20
25
30
35
40
45

1 VCPUs 2 VCPUs 4 VCPUs 1 VCPUs 2 VCPUs 4 VCPUs
Upstream MTTCG

1
2
4

Enabling System Level Design 24

Open Source SystemC Standard

SystemC TLM-2.0 IEEE 1666 is :
 The Virtual Platform Standard

•  Open Source Simulator available for download from Accellera.org

Corporate members 2016
•  GreenSocs technology at the heart of TLM-2.0 standard.
•  All GreenSocs interfaces use TLM-2.0

•  GreenSocs helping Accellera forge a new Model to tool standard.
•  Preview available in GreenConfig.

•  Our solutions are tool independent, and work with all vendors.

Enabling System Level Design 25

Open source simulator,
or SystemC standard Vendor tool

Processors Communication Devices

Command and control
Back-end

Device Drivers

O/S

Application Stack

Model Based Virtual Platform Architecture

Component
Library

 library

 Or
 Client Library

Virtual Platform Model
Interoperability Layer

Enabling System Level Design 26

GreenSocs SystemC Infrastructure.

•  Model Construction
•  Eases building register definitions, state machines etc
•  Scripting (Python)

•  Model to Model communication
•  Busses and routers (e.g. AMBA, PCIe, OCP, etc)
•  Signals (interrupts etc)
•  Serial, Ethernet, Graphics etc….

•  Model to Tool communication
•  Configuration, (inc Lua)
•  Control (Run time re-configuration)
•  Inspection (outputs and tracing).

•  Model IP
•  Routers,
•  simple IP blocks,
•  libraries (Graphics, communication)

•  Tools
•  Integration with Qemu, GEM5, Eclipse and other tools.

Tool V
en

d
or In

d
ep

en
d

en
t

O
P

EN
 S

O
U

R
C

E

Enabling System Level Design 28

So, what does the code look like?

PL011::PL011(sc_module_name name):
gr_device(name, gs::reg::INDEXED_ADDRESS, 0x1000, NULL),
target_port("target_port", r),
irq_socket("irq_socket"),
serial_sock("serial_socket"),
irqNumber("irq_number", 0)
{
 serial_sock.register_b_transport(this, &PL011::serial_b_transport);
 gs::socket::config<gs_generic_signal::gs_generic_signal_protocol_types> cnf;
 cnf.use_mandatory_extension<IRQ_LINE_EXTENSION>();
 irq_socket.set_config(cnf);
 target_port.disable_delay();

 this->readPtr = 0;
 this->readWPtr = 0;
 this->readCnt = 0;

 pl011_r("UARTDR", "Data register", PL011_UARTDR, 0x0000, 0x0FFF);
 pl011_r("UARTRSR", "Receive status register", PL011_UARTRSR, 0x0000,
 0x000F);
 pl011_r("UARTFR", "Flag", PL011_UARTFR, 0x90, 0);
 pl011_r("UARTILPR", "IrDA low power counter register", PL011_UARTILPR,
 0x0000, 0x000F);

Convenience to declare
a register container.

And associated ports…

Convenience to make
TLM easier

Declare your registers

Enabling System Level Design 29

void PL011::end_of_elaboration()
{
 GR_FUNCTION_PARAMS(PL011, clearIRQ);
 GR_SENSITIVE(r[PL011_UARTICR].add_rule(gs::reg::POST_WRITE, "clearIRQ",
 gs::reg::NOTIFY));

...
void PL011::clearIRQ(gs::reg::transaction_type *&tr, const sc_core::sc_time &delay)
{
 r[PL011_UARTRIS] = r[PL011_UARTRIS] & ~r[PL011_UARTICR];
 updateIRQ();
}

void PL011::updateIRQ(void)
{
 IRQ_ext_data data;
gs_generic_signal::gs_generic_signal_payload payload;

 /* Update the IRQ line. */
 data.value = (r[PL011_UARTMIS] != 0);
 data.irq_line = irqNumber;
 payload.set_data_ptr((unsigned char *) &data);
 irq_socket.validate_extension<IRQ_LINE_EXTENSION>(payload);
 irq_socket->b_transport(payload, time);
}

Convenience
 Register calbacks.

Do the functionality.

Send an IRQ (transaction).

Enabling System Level Design 31

Licensing Model

GreenSocs provides it’s library, and IP under an end user
license agreement to it’s customers.

You receive full source, and the rights to modify and distribute
that source code internally to your company free of charge.

The license is a modified BSD.

Enabling System Level Design 32

Licensing Model for QBox

Qbox is provided as an TLM model from
http://greensocs.com/

It is a free download, and neither you, nor any customer is
required to pay any license.

It is licensed under the GPL
You may use it freely, if you
distribute code based on it,
you must do so in source form.

You should write your SystemC models to respect the TLM-2.0
API’s. You should allow your customers the choice of which
CPU model to use. One (free) choice is a Qbox model.

Nobody (apart from GreenSocs) should be distributing Qbox.

Enabling System Level Design 33

Importance of Standards

Your product

Is their component

Her tool choice

Must not force your choice!

Models must be tool independent
They must use the Standard interfaces

Is not his choice

Enabling System Level Design 35

GreenSocs : principle offers

Consultancy and Services

The Experts in Virtual platforms:
 Creation, deployment, integration

Tool independent – vendor neutral.
 Allow us to guide you to success

MODEL DEVELOPMENT
Virtual Platforms based integrated development environments,
for CoTs or specialist devices,
ready for your software engineers to be productive.

 All models adhere to STANDARDS
 All model source provided.

OPEN SOURCE DEVELOPMENT
Adding to the existing open source tools and models.

 ‘Upstreaming’ and dissemination

Enabling System Level Design 36

More information:

www.greensocs.com
mark@greensocs.com

