UVM-SystemC — Functional coverage &
constrained randomization

Stephan Gerth
Stephan.Gerth@bosch-sensortec.com

BOSCH

Agenda

 UVM-SystemC Updates
* Functional Coverage with FC4SC
* Wrap-Up

IIIIIIIIIIIIIIIIIIIIIII

accellera - DVLCEIN
© Accellera Systems Initiative 2

SYSTEMS INITIATIVE

Why UVM-SystemC

* Elevate verification beyond block-level towards system-level

— System verification and software-driven verification executed by teams not familiar with
SystemVerilog and its simulation environment

— Tests coded in C or C++ as system and SW engineers use an (open source) tool-suite for
embedded system design and SW development

e Structured ESL verification environment

— verification environments for Virtual Platforms and Virtual Prototypes not conforming to
following verification environments

— Key: Benefits if the system-level verification environment is UVM compliant and can be
reused later by the IC verification team

* Extendable, fully open source, and future proof
— Based on Accellera’s Open Source SystemC simulator
— As SystemC is C++, libraries can be integrated easily (e.g. CRAVE, FC4SC)

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 3

SYSTEMS INITIATIVE

UVM-SystemC Updates

 UVM-SystemC 1.0 beta3 release
— Register API
— Bugfixes & SystemC 2.3.3 support
— Ubus example
— Automatic objection mechanism

 UVM verification ecosystem add-ons
— Integration of CRAVE via UVM-SystemC layer available

— Integration of AMIQ's functional coverage implementation (FC4SC) as
supplemental material

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 4

SYSTEMS INITIATIVE

Functional Coverage for SystemC

Based on slides by Dragos Dospinescu (AMIQ)

IIIIIIIIIIIIIIIIIIIIIII

accellera DV

Functional Coverage for SystemC

 What is FC4SC

* Coverage definition API

* Coverage options and sampling API

e QOutput & visualisation

* Documentation

 What can be improved

* Basic mechanisms demonstrated on SFIFO example

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 6
SYSTEMS INITIATIVE

What is FC4SC (1)

e C++11 header only library:

— built from scratch, with no 3rd party library dependencies
— Based on IEEE 1800 - 2012 SystemVerilog Standard
— https://github.com/amiqg-consulting/fc4sc

* Features:
— Coverage model construction
— Coverage sampling control & options
— Runtime coverage queries
— Coverage database saving

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 7

SYSTEMS INITIATIVE

https://github.com/amiq-consulting/fc4sc

What is FC4SC (2)

Coverage DB management tools

1) Coverage DB visualisation tool (JavaScript):
fc4sc/tools/gui/index.html

1) Coverage DB merge tool (Python):
fc4sc/tools/coverage merge/merge.py

Easy to use; just

#tinclude “fc4sc.hpp”

IIIIIIIIIIIIIIIIIIIIIII

accellera . DV
© Accellera Systems Initiative 8
SYSTEMS INITIATIVE

Coverage definition API: overview

* Follows UCIS DB coverage data model:

* Elements: bin, coverpoint, cross, covergroup

~ -
~ -
~ -
~ -

S _ -
[UCIS HBI= SCOPE J

~

"”mml RS

0:n
[[UCIS_COVERGROUP]L]—b[UCIS _COVERINSTANCE J
13 ¥

L I

|

[1:n]

[0:n]

v
2:n
[[UGIS_CDVERPDINT]L-]— - -[UCIS_CROSS]

|

R -

}

UCIS_COVERPOINT]-i- - = -[UCIS_CROSS] }

-

-

[1:n] J,

ucls_DEFAULTBIN

- ~

UCIS_CVGBIN

J, [0:n]

Crossed out elements are not currently part of the implementation

SYSTEMS INITIATIVE

© Accellera Systems Initiative

> -~

- ~
-

~

UCIS_IGNOREEIN

UCIS_ILLEGALBIN

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Coverage definition API: covergroup

class cvg ex: public covergroup

{ cvg ex cgl (“cgl”);
public: -

CG_CONS (cvg _ex) {
/*user code*/

cvg _ex cg2(“cg2”) ;

}
};
#define CG_CONS(type, args...) \ \
using covergroup::sample; \
type(std::string inst_name ="", ##args) :ﬁ‘c4sc::covergroup(#type, __FILE__, LINE__, inst_name)]

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 10

SYSTEMS INITIATIVE

Coverage definition API: coverpoint (1)

* Register the coverpoint into the covergroup
* Bind sample expression & condition

e Add bins
L)
oﬁe‘
O o0 Sample expression &
“o’\ &‘6\‘\ Name & data type condition
o AC
@.\‘,Q o\)Q 6 = — A .
cp 6& COVERPOINT(int, datacp, data*2, flag!=0)
«‘6\9 00\‘6 {

// bin definitions

}; 2019

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 11

SYSTEMS INITIATIVE

Coverage definition API: bins (basic)

bin<int>("less than 8", Multiple bin types - different
1, sampling behavior
interval (2, 3),
interval (7, 5)

) ; I name (std::string) = first argumentis
mandatory
illegal bin<int>("10", 10); I values / intervals - leading
ignore bin<int>("100", 100) ; arguments at least one
2019

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 12

SYSTEMS INITIATIVE

Coverage definition API: bins (complex #1)

// 2 bins inside [0:255]
bin array<int>("split",
2,
interval (0, 255)
) ;

I
Expands to multiple separate bins inside the coverpoint

l

bin<int>("split[0]", interval (0, 128)),
bin<int>("split[1l]", interwval (129, 255))

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 13

SYSTEMS INITIATIVE

Coverage definition API: bins (complex #2)

auto fibonacci = [] (size t N) -> std::vector<int>
{
int £0 = 1, f1 = 2; // initialize start number
std: :vector<int> result (N, £0);
// calculate following fibonacci numbers
for (size t i =1; i < N; i++) {
std: :swap (£f0, f£f1);
result[i] = £0;
f1 += £0;
}
return result;
};
COVERPOINT (int, bin array cvp, value) ({
bin array<int>("fib", fibonacci (5))

};

bin<int>("£ib[0]", 1),
bin<int>("fib[1]", 2),
bin<int>("fib[2]", 3),
bin<int>("fib[3]", 5),
bin<int>("fib[4]", 8)

accellera o
© Accellera Systems Initiative 14

SYSTEMS INITIATIVE

IIIIIIIIIIIIIIIIIIIIIII

EEEEEEEEEEEEEEEEEEEEEEE

Coverage definition API: bins + coverpoint

=> bins are added at the coverpoint definition

COVERPOINT (int, datacp, data * 2, flag '= 0)

{
illegal bin<int>("illegal 3", 3),

ignore bin<int>("ignore 2", 2),

bin<int>("four", 4),
bin<int>("other", 11, interval(5,10), interval (20,30))

};
The order and number of bins are arbitrary!

IIIIIIIIIIIIIIIIIIIIIII

accellera e VBN
© Accellera Systems Initiative 15

SYSTEMS INITIATIVE

Coverage definition API: cross

class cvg ex: public covergroup {
public:
CG_CONS (cvg _ex) {
/*user code*/

iauto cvpl x cvp2 = cross<int,int>(this, "cross", &cvpl, &cvp2); i

COVERPOINT (int, cvp2, data2) ({
bin<int>("zero", 0),
bin<int>("negative", -1, -2)

COVERPOINT (int, cvpl, datal) ({
bin<int>("zero", 0),
bin<int>("positive", 1, 2)

R 1k
}:
© Accellera Systems Initiative 16

SYSTEMS INITIATIVE

Coverage options & sampling API (1)

Public Member Functions

cvg_option ()

Sets all values to default.

Public Member Functions

Public Attributes

uint

uint
std::string
uint

uint

bool

uint

bool

bool

Friends

std:ostream &

SYSTEMS INITIATIVE

weight cvg_type_option ()
goal Sets all values to default.
comment

=L _east Public Attributes

auto_bin_max
detect overlap
cross_num_print_missing uint weight

per_instance . goa
get_inst_coverage U Int I
std:string comment
bool merge_instances

operator<< (std:.ostream &stream, const cvg_option &inst)
Prints option in UCIS XML format.
2019

DESIGN AND VERIFICATION™

DVLCLOIN

CONFERENCE AND EXHIBITION

© Accellera Systems Initiative 17

Coverage options & sampling API (2)

Public Member Functions . .
Public Member Functions

cvp_option ()

Sets all values to default. Cross_option ()

Sets all values to default.

Public Attributes Public Attributes

uint weight - -
uint goal LJ!I‘It WEIQI; t
std:string comment DS
std:string comment

uint at least _
uint at least

uint_airlo_tin_max uint cross num print missi
bool detect overlap _ il ng

Eriends Friends

std::ostream & operator<< (std:ostream &stream, const cvp_option &inst) stdrostream & gﬁﬁ:ﬂ'};ﬁ ;niislfldﬂ?:sltsre}?hw L%ﬁtrﬁ:l?' const cross_option &insi)

Prints option in UCIS XML format.

2019
accellera - DV
© Accellera Systems Initiative 18

SYSTEMS INITIATIVE

Coverage options & sampling API (3)

Public Member Functions

virtual void

virtual void
virtual

to_xml (std::ostream &stream) const =0
Function to print an item to UCIS XML.

sample ()=0
~api_base ()

Coverage API

AP for getting and controliing coverage collection atrun time

virtual douhble

virtual double

virtual void

virtual void

virtual void

get_inst_coverage () const =0

Returns the coverage associated with this instance.

get_inst_coverage (int &hit, int &total) const =0

Returns the coverage associated with this instance.

set_inst_name (const std::string &new_name)
Changes the name of the instance.

start ()=0

Enables sampling on this instance.

stop ()=0
Stops sampling on this instance.

Public Attributes

name

api_base

coverpoint

std:string
accellera

SYSTEMS INITIATIVE

© Accellera Systems Initiative

covergroup

DESIGN AND VERIFICATION™

CONFERENCE AND EXHIBITION

Output & visualization

< [e] ucis:UCIS
® xmlns:ucis
® ucisVersion
@® writtenBy
® writtenTime
P [e] ucis:sourceFiles
P [e] ucis:historyNodes
< (¢ ucis:instanceCoverages
® name
@® key
® instanceld
® alias
® moduleName
® parentinstanceld
P [e] ucis:id
< (e ucis:covergroupCoverage
® weight
v [e] ucis:cginstance
® name
@® key
@ alias
® excluded
[e] ucis:options
[e] ucis:cgld
[e] ucis:coverpoint
[e] ucis:coverpoint

Generate output (from code):

fcdsc::global::coverage save("out.xml");

WV aNs VNS

20

SYSTEMS INITIATIVE

© Accellera Systems Initiative

http://www.w3.0rg/2001/XMLSchema-instance
1.0

$USER

2008-09-29T03:49:45

string

1

2

string
output_coverage
0

output_coverage_1
3

string

false

2019

—ESIGN AND VERIFICATION"™

DVLCLOIN

CONFERENCE AND EXHIBITION

Documentation

1) Doxygen
2) PDF User guide
3) github.com/amig-consulting/fc4sc repository releases notes

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 21
SYSTEMS INITIATIVE

https://github.com/amiq-consulting/fc4sc

What can be improved

Coverpoint definition API

Custom types parametrization for bin, coverpoint, cross?
Add default bins

Add cross bins filtering

Add cross sampling condition

Add coverage model visitor

Better UCIS DB support

More support of coverage options

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 22

SYSTEMS INITIATIVE

SFIFO example

e Synchronous FIFO
* Coverage of data & status signals

Wr_en =—— — rd_en
wr_data — — rd_data
SFIFO
f clr = — f_empty
f rst — — f _full

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 23

SYSTEMS INITIATIVE

UVM-SystemC Wrap-Up

IIIIIIIIIIIIIIIIIIIIIII

(agcellera PAATIT

UVM-SystemC Wrap-Up

 CRAVE integration layer to be part of UVM-SystemC PoC
* Functional Coverage w/ FC4SC

— Integration of AMIQ's functional coverage implementation (FC4SC) as
supplemental material

— API standardization for functional coverage major topic for next year

e Sound verification environment using state of the art techniques

* Input and support from interested parties welcome!

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 25

SYSTEMS INITIATIVE

UVM-SystemC Wrap-Up

* References
— SystemC Verification Working Group

* https://www.accellera.org/activities/working-groups/systemc-verification

— UVM-SystemC

* https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta3.tar.gz

— FC4SC
e https://github.com/amig-consulting/fc4sc

— CRAVE

* http://www.systemc-verification.org/crave

IIIIIIIIIIIIIIIIIIIIIII

accellera - DV
© Accellera Systems Initiative 26

SYSTEMS INITIATIVE

https://www.accellera.org/activities/working-groups/systemc-verification
https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta3.tar.gz
https://github.com/amiq-consulting/fc4sc
http://www.systemc-verification.org/crave

Questions

IIIIIIIIIIIIIIIIIII

accellera DV

IIIIIIIIIIIIIIIII

