
UVM-SystemC – Functional coverage &
constrained randomization

Stephan Gerth

Stephan.Gerth@bosch-sensortec.com

© Accellera Systems Initiative 1

Agenda

• UVM-SystemC Updates

• Functional Coverage with FC4SC

• Wrap-Up

© Accellera Systems Initiative 2

Why UVM-SystemC
• Elevate verification beyond block-level towards system-level

– System verification and software-driven verification executed by teams not familiar with
SystemVerilog and its simulation environment

– Tests coded in C or C++ as system and SW engineers use an (open source) tool-suite for
embedded system design and SW development

• Structured ESL verification environment
– verification environments for Virtual Platforms and Virtual Prototypes not conforming to

following verification environments
– Key: Benefits if the system-level verification environment is UVM compliant and can be

reused later by the IC verification team

• Extendable, fully open source, and future proof
– Based on Accellera’s Open Source SystemC simulator
– As SystemC is C++, libraries can be integrated easily (e.g. CRAVE, FC4SC)

© Accellera Systems Initiative 3

UVM-SystemC Updates

• UVM-SystemC 1.0 beta3 release

– Register API

– Bugfixes & SystemC 2.3.3 support

– Ubus example

– Automatic objection mechanism

• UVM verification ecosystem add-ons

– Integration of CRAVE via UVM-SystemC layer available

– Integration of AMIQ‘s functional coverage implementation (FC4SC) as
supplemental material

© Accellera Systems Initiative 4

Functional Coverage for SystemC

Based on slides by Dragos Dospinescu (AMIQ)

© Accellera Systems Initiative 5

Functional Coverage for SystemC

• What is FC4SC

• Coverage definition API

• Coverage options and sampling API

• Output & visualisation

• Documentation

• What can be improved

• Basic mechanisms demonstrated on SFIFO example

© Accellera Systems Initiative 6

What is FC4SC (1)

• C++11 header only library:

– built from scratch, with no 3rd party library dependencies

– Based on IEEE 1800 - 2012 SystemVerilog Standard

– https://github.com/amiq-consulting/fc4sc

• Features:

– Coverage model construction

– Coverage sampling control & options

– Runtime coverage queries

– Coverage database saving

© Accellera Systems Initiative 7

https://github.com/amiq-consulting/fc4sc

What is FC4SC (2)

Coverage DB management tools
1) Coverage DB visualisation tool (JavaScript):

fc4sc/tools/gui/index.html

1) Coverage DB merge tool (Python):
fc4sc/tools/coverage_merge/merge.py

Easy to use; just

#include “fc4sc.hpp”

© Accellera Systems Initiative 8

Crossed out elements are not currently part of the implementation

Coverage definition API: overview

• Follows UCIS DB coverage data model:
• Elements: bin, coverpoint, cross, covergroup

© Accellera Systems Initiative 9

Coverage definition API: covergroup

© Accellera Systems Initiative 10

class cvg_ex: public covergroup

{

public:

CG_CONS(cvg_ex) {

/*user code*/

}

};

#define CG_CONS(type, args...) \

using covergroup::sample; \
type(std::string inst_name = "", ##args) : fc4sc::covergroup(#type, __FILE__, __LINE__, inst_name)

cvg_ex cg1(“cg1”);

cvg_ex cg2(“cg2”);

Coverage definition API: coverpoint (1)

• Register the coverpoint into the covergroup
• Bind sample expression & condition
• Add bins

© Accellera Systems Initiative 11

COVERPOINT(int, datacp, data*2, flag!=0)

{

// bin definitions

};

Name & data type

Sample expression &
condition

Coverage definition API: bins (basic)

Multiple bin types → different
sampling behavior

© Accellera Systems Initiative 12

bin<int>("less_than_8",

1,

interval(2, 3),

interval(7, 5)

);

illegal_bin<int>("10", 10);

ignore_bin<int>("100", 100);

! name (std::string) → first argument is

mandatory

! values / intervals → leading

arguments at least one

Coverage definition API: bins (complex #1)

© Accellera Systems Initiative 13

// 2 bins inside [0:255]

bin_array<int>("split",

2,

interval(0, 255)

);

bin<int>("split[0]", interval(0, 128)),

bin<int>("split[1]", interval(129, 255))

Expands to multiple separate bins inside the coverpoint

Coverage definition API: bins (complex #2)

© Accellera Systems Initiative 14

auto fibonacci = [](size_t N) -> std::vector<int>

{

int f0 = 1, f1 = 2; // initialize start number

std::vector<int> result(N, f0);

// calculate following fibonacci numbers

for (size_t i = 1; i < N; i++) {

std::swap(f0, f1);

result[i] = f0;

f1 += f0;

}

return result;

};

COVERPOINT(int, bin_array_cvp, value) {

bin_array<int>("fib", fibonacci(5))

};

bin<int>("fib[0]", 1),

bin<int>("fib[1]", 2),

bin<int>("fib[2]", 3),

bin<int>("fib[3]", 5),

bin<int>("fib[4]", 8)

Coverage definition API: bins + coverpoint

© Accellera Systems Initiative 15

➔bins are added at the coverpoint definition

COVERPOINT(int, datacp, data * 2, flag != 0)

{

illegal_bin<int>("illegal_3", 3),

ignore_bin<int>("ignore_2", 2),

bin<int>("four", 4),

bin<int>("other", 11, interval(5,10), interval(20,30))

};

The order and number of bins are arbitrary!

Coverage definition API: cross

© Accellera Systems Initiative 16

class cvg_ex: public covergroup {

public:

CG_CONS(cvg_ex) {

/*user code*/

}

};

auto cvp1_x_cvp2 = cross<int,int>(this, "cross", &cvp1,&cvp2);

COVERPOINT(int, cvp1, data1) {

bin<int>("zero", 0),

bin<int>("positive", 1, 2)

};

COVERPOINT(int, cvp2, data2) {

bin<int>("zero", 0),

bin<int>("negative", -1, -2)

};

Coverage options & sampling API (1)

© Accellera Systems Initiative 17

Coverage options & sampling API (2)

© Accellera Systems Initiative 18

Coverage options & sampling API (3)

© Accellera Systems Initiative 19

api_base

covergroupcoverpoint

Output & visualization

© Accellera Systems Initiative 20

Generate output (from code):

fc4sc::global::coverage_save("out.xml");

Documentation

© Accellera Systems Initiative 21

1) Doxygen

2) PDF User guide

3) github.com/amiq-consulting/fc4sc repository releases notes

https://github.com/amiq-consulting/fc4sc

What can be improved

© Accellera Systems Initiative 22

● Coverpoint definition API

● Custom types parametrization for bin, coverpoint, cross?

● Add default bins

● Add cross bins filtering

● Add cross sampling condition

● Add coverage model visitor

● Better UCIS DB support

● More support of coverage options

SFIFO example

• Synchronous FIFO

• Coverage of data & status signals

© Accellera Systems Initiative 23

SFIFO
rd_en

rd_data

wr_en

wr_data

f_empty

f_full
f_clr

f_rst

UVM-SystemC Wrap-Up

© Accellera Systems Initiative 24

UVM-SystemC Wrap-Up

• CRAVE integration layer to be part of UVM-SystemC PoC

• Functional Coverage w/ FC4SC

– Integration of AMIQ‘s functional coverage implementation (FC4SC) as
supplemental material

– API standardization for functional coverage major topic for next year

• Sound verification environment using state of the art techniques

• Input and support from interested parties welcome!

© Accellera Systems Initiative 25

UVM-SystemC Wrap-Up

• References

– SystemC Verification Working Group
• https://www.accellera.org/activities/working-groups/systemc-verification

– UVM-SystemC
• https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta3.tar.gz

– FC4SC
• https://github.com/amiq-consulting/fc4sc

– CRAVE
• http://www.systemc-verification.org/crave

© Accellera Systems Initiative 26

https://www.accellera.org/activities/working-groups/systemc-verification
https://accellera.org/images/downloads/drafts-review/uvm-systemc-1.0-beta3.tar.gz
https://github.com/amiq-consulting/fc4sc
http://www.systemc-verification.org/crave

Questions

© Accellera Systems Initiative 27

