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Ionizing Dose System Modeling Project
Motivation

* Total lonizing Dose (TID) causes performance degradation at
component level, parameters that characterize mission
performance are at the system level

* Commercial-off-the-shelf (COTS) parts:
Desirable from cost, performance point of view
Not controlled by fab for radiation impacts

High variability part-to-part in radiation response

* Need multi-scale simulation with estimation of parameter
degradation for analog, digital, mixed-signal, power parts

* Goal: Estimation of variation of system-level key performance
indicators (KPIs) as a function of TID.



Ionizing Dose System Modeling Project

Approach

* Need a flexible approach that is
scalable for system-level
complexity

* Perform behavioral modeling at the
functional level

Note: Physics-based modeling at transistor
level is not scalable

Model electrical behaviors of components
used in system on the ‘macro’-level

Incorporate radiation variation into
parameters of the behavioral model

Parameter variation with TID can be
estimated based on testing or operational
data, behavior of similar parts
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Overview of REMIX Modeling Flow

1. Select a specific system function that uses TID-sensitive
components

2. Select the KPI(s) for the system function to be characterized
3. Build an approximate model for the system function

4. Simulate the system to determine the KPI(s) as function of specific
values for electrical parameters P and a specific value of TID.

5. Determine the relevant statistical TID environment for the mission

6. Use a smart sampler (e.g. SNL/Dakota) to compute KPI(s) over a
range of TID and P, drawn from distributions

/. The variation of TID with mission time enables calculation of
reliability metrics of system margin-to-failure and time-to-failure



1. Select a system function that involves z
TID-sensitive components
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Sphinx C&DH System Functions:
Communications, data management, system
diagnostics, time keeping, temperature
regulation...
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Example: Controlled Heating of
Spacecraft before Activation

» Closed loop temperature
control system implemented
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» Behavioral models of
subsystems and components

» Radiation-aware functional
models for analog, digital, and
mixed signal parts



2. Choose key performance indicators

(KPI-s) for the system function

r(t) e(t) u(t) y(t)
|:> Controller :> Process :>ﬁ):>

T

Signals:

- 1(t): reference signal, desired temperature

- e(t): error signal: difference between desired and
measured temperature

- u(t): control signal: power to the heater

- y(t): process signal: measured temperature

Example KPIs:

- SettlingMax: maximum value reached by y(t)
before settling to the desired steady-state value

- SettlingTime: time taken for reaching the steady-
state value and stabilizing within X% of it

Amplitude
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https://www.mathworks.com/

3. Build behavioral models for
components that affect the KPIs

AD590 Temperature sensor datasheet:
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Figure 7. Schematic Diagram

Transistor Level: TOO COMPLEX Behavioral Level: SUFFICIENT




AD5S90 Model

» Voltage = R¥*(K+M*Temperature +a*TID)
R = 2800 Ohms
K =273.2e-6
M= le-6
a =0.2e-6

» Parameter for AD590 part to part variability

Param|: Gaussian with p=1, 0=0.05

» Updated equation with part-to-part variability
Voltage = Param | *R*(K+M*Temperature +a*TID)



ADC Model

ADC-Code = ADC_MAX * (Vin)/ (Vmax— Vmin) - o * TID * (Vin-Vmin)A2
ADC_MAX, max code from ADC = 2*n — 1 (for a n-bit ADC), =255 for n=8
n=8
Vmax =5, Vmin=0
a = (ADC_MAX/n)/ ((Vmax- Vmin) A 2*30)

Parameter for ADC model part to part variability
Param2: Gaussian with p=1, 0=0.05

Updated equation with part-to-part variability
ADC-Code = ADC_MAX * (Vin-Vmin)/ (Vmax — Vmin)
- Param2*a * TID * (Vin-Vmin)"2
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Composed System Model

SystemC/AMS model constructed from components using the COSIDE mixed-signal modeling tool
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4. Simulate system function
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For simulation a ‘testbench’ is needed that includes the system model, as well as the model of the

system’s environment.

I_tcLoop_subsystem!1

i_thermal_load1

inTemp
:j TCLOOP_SUBSYSTEM ~ mr=sfre
i THERMAL_LOAD -
reflemp b
[
Block Model Type
id=0  adc_param=1 ad530_param =1 TC_LOOP System model SystemC/AMS
Inputs: THERMAL_LOAD | Spacecraft thermal mass SystemC/AMS.ELN
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5. Determine TID environment

TID (K 5i02)
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TID environment uncertainty
modeled as a Gaussian with
increasing standard
deviation with mission time

« TID rate: Gaussian with

u=0.14 0=0.03

Determined based on
operational data or models
Can be time varying
Plot is an ensemble of 350
PDFs, one for each mission
day
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6. Use a smart sampler to compute KPI(s) overa =—————
range of TID and P, drawn from distributions
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Example: TID at Radiation
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DAKOTA [Source: Sandia National Labs] TiD

The Sandia DAKOTA UQ platform samples the probabilistic models using intelligent sampling
algorithms and runs simulations for the sample points. The collected simulation results are samples
from a probability distribution, that represents the system’s performance as a function of the
radiation environment.
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Recap: Key Performance Indicators (KPIs

Step Response + RiseTime — Time it takes for the response

' ' to rise from 10% to 90% of the steady-state
response.

+ SettlingTime — Time it takes for the error
between the response y(t) and the steady-
state response yj,, to fall to within 2%

Of Yinar

» SettlingMin — Minimum value of y(t) once
the response has risen.

» SettlingMax — Maximum value of y(t) once
the response has risen.

* Overshoot — Percentage overshoot,
relative to Y-

* Undershoot — Percentage undershoot.
* Peak — Peak absolute value of y(t)

* PeakTime — Time at which the peak value
occurs.

Amplitude

Time (seconds)

Source :


https://www.mathworks.com/help/control/ref/stepinfo.html

Results:

SettlingMin - distribution with mission time
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Results:

Temperature (K)
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Results:
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Rise time: mean and std-dev with time =S

RiseTime - distribution with mission time
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Observations

» System KPI CDFs (at different mission times), allow for computing
probability that the KPl remains within operational requirements.

» Example:Assume requirements state that maximum permissible
temperature is not to exceed 310K.

» Probability of Failure (mission time = 350 days)
P-= - Prob(SettlingMax<=3 10, mission-time=350 days)= 0.56




Conclusions
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Multi-scale mixed-signal simulation of electronic systems can
predict impact of component-level TID degradation on system
function KPls
Behavioral models for standard components — transfer functions
Radiation-effected parameters are sampled from distributions

Mixed-signal models can use the actual control algorithm code
”Smart” Monte Carlo sampling and simulation can give

probabilistic estimates of environmental impacts on system
KPI-s as a function of elapsed mission time

Different system functions experience different impacts of TID;
they may fail at different doses

Probability of a specific KPI failure at specific mission time can
be calculated



