AMS Timing Closure with Coside Using timing-aware models and static analysis techniques

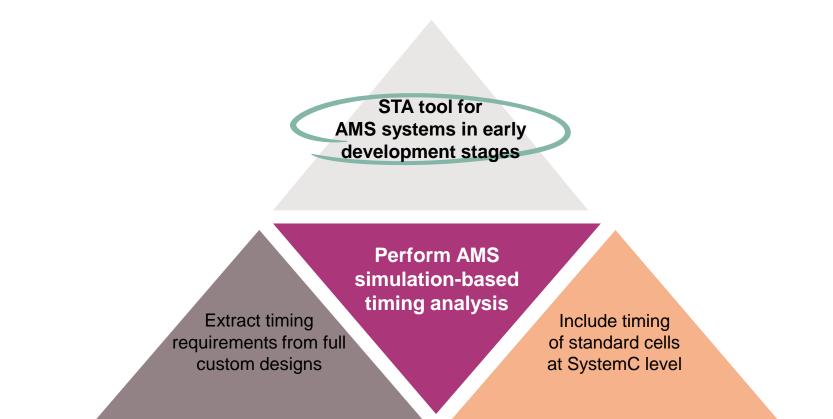
Guillermo Conde, Infineon Technologies Austria 09.11.2021

restricted

	Introduction	3
2	Timing in Synchronous Digital Systems	6
3	Timing in AMS Systems	9
4	The Liberty Block	12
5	Coming Next	17

1	Introduction	3
2	Timing in Synchronous Digital Systems	6
3	Timing in AMS Systems	9
4	The Liberty Block	12
5	Coming Next	17

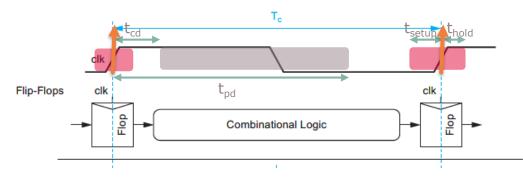
Introduction


Timing Closure

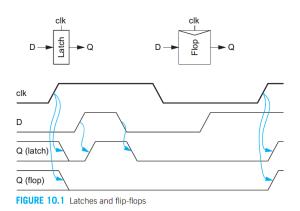
 process by which a logic design (sequential + combinatorial gates) is modified to meet its timing requirements.

Semi-custom designs using STA

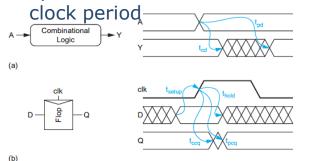
- Timing requirements are translated into static timing constraints to the EDA tool.
 Timing Closure in AMS systems
- Models including accurate
 No timing requirements in place.
 characterization
 - Models do not include any timing characterization.
 - Timing issues detected very late in development


Infineon

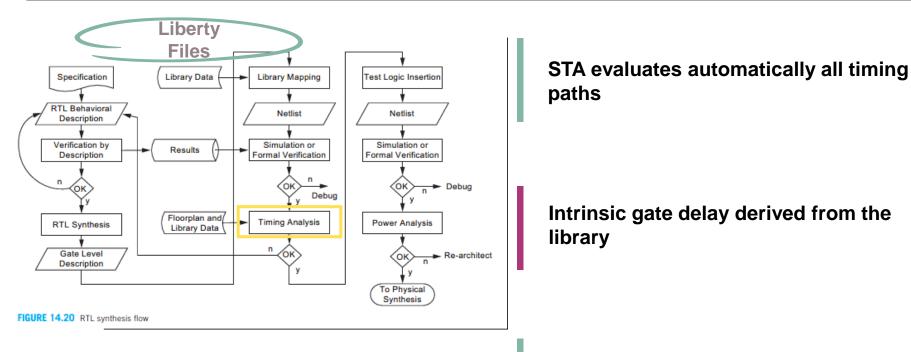
1	Introduction	3
2	Timing in Synchronous Digital Systems	6
3	Timing in AMS Systems	9
4	The Liberty Block	12
5	Coming Next	17



Timing basics in digital systems

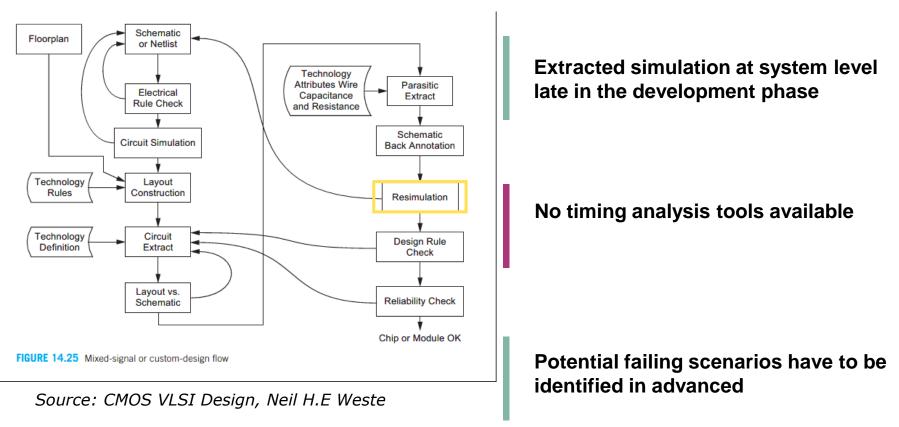

 Most common sequencing elements are latches and flip-flops

- > Basic timing contraints and delays
- > Worst case scenario known including PVT
- Systematic method to guarantee proper timing (STA)
- Systems insensitive to PVT variations once timing is guaranteed



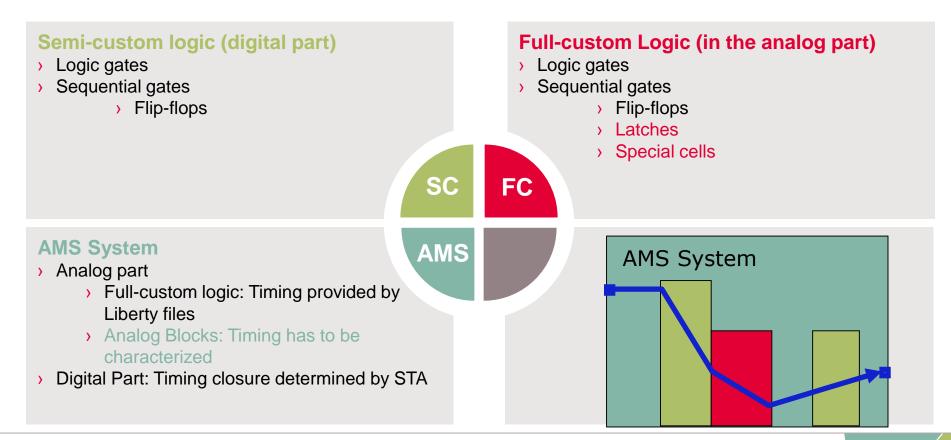
 Digital flow rules: Synchronous systems based on FFs and constant

Semi-custom design flow


Source: CMOS VLSI Design, Neil H.E Weste

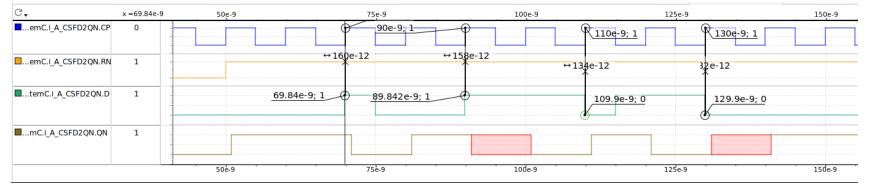
Loads are either estimated statistically or derived from the floorplanning.

1	Introduction	3
2	Timing in Synchronous Digital Systems	6
3	Timing in AMS Systems	9
4	The Liberty Block	12
5	Coming Next	17



AMS system components

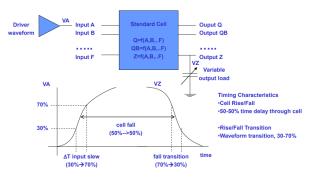
1	Introduction	3
2	Timing in Synchronous Digital Systems	6
3	Timing in AMS Systems	9
4	The Liberty Block	12
5	Coming Next	17

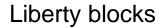

Timing-aware models

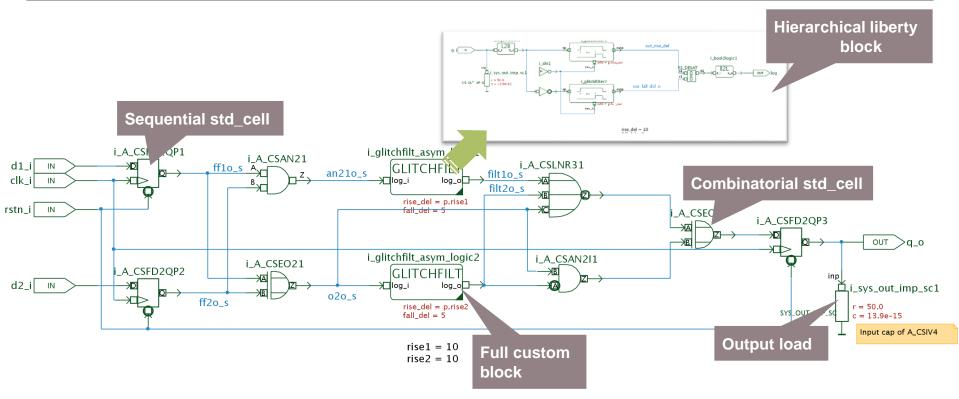
- > System C models with 4-value data types
- > Delay included
- > Time stamps taken at every event
- > Automatic checks on
 - Setup and hold time
 - Reset recovery and removal
 - Minimum Pulse Width

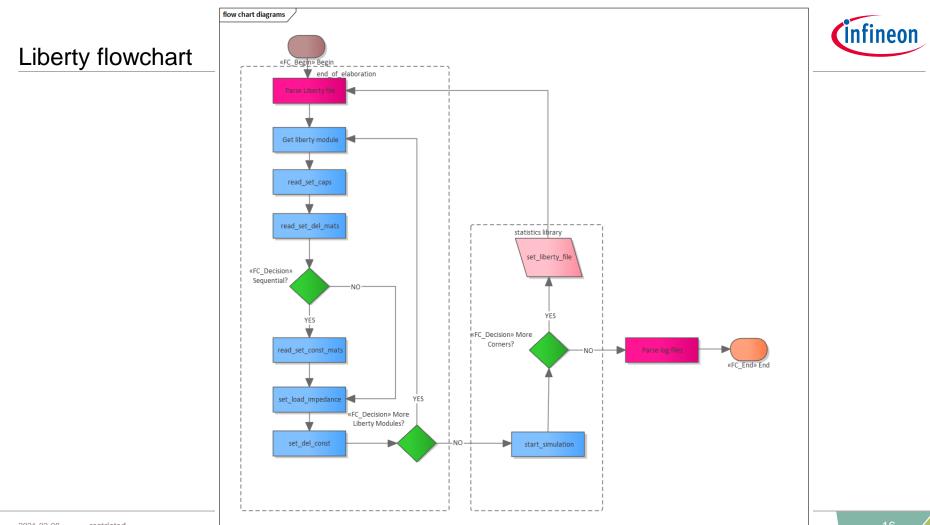
Delay Path		Load	Capad	itance	[fF]		
[ps]	5	10	25	50	250		
$CP\Uparrow\RightarrowQN\Downarrow$	403	422	473	552	1.18e+03		
$CP \Uparrow \Rightarrow QN \Uparrow$	443	463	519	613	1.35e+03		
RN ↓ ⇒ QN ↑	266	286	343	436	1.18e+03		

	Constraint [ps]
Check	typ
D ↓ setup CP ↑	133
D ↓ hold CP ↑	14.9
D ☆ setup CP ☆	159
D ↑ hold CP ↑	24.2
RN recovery CP	-261
RN 🕆 removal CP 🕆	263


MPW	value [ps]
CP (L)	173
CP (H)	156
RN (L)	274

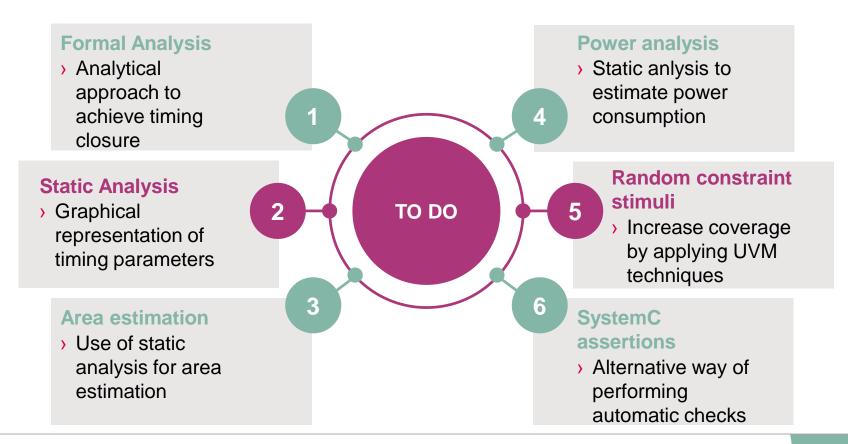

Liberty Files


- > Open Source ASCII format to specify:
 - PVT Characterization
 - Area
 - Timing
 - Power
 - Noise
- > Cell delays/constraints depending on:
 - Input slew
 - Output load



Joseph A. Elias, Ph.D, University of Kentucky, Adjunct Professor, ECE Dept; Cypress Semiconductor MTS

pin(Q	<pre>N) { direction capacitance max_capacitance min capacitance</pre>	: output; : 0; : 0.256; : 0.001;							Delay D	ata							
	related_ground_pi							I	Delay Pa	ath		Load	Capac	itance	[fF]		
	related_power_pin function	: VDD; : "IQN";							[ps]		5	10	25	50	250		
	power down functi									QN ↓	403	422	473	552	1.18e+0	3	
						_				QN 🏦	443	463	519	613	1.35e+0	3	
	/* characterizati /* characterizati								RN↓⇒	QN 🏠	266	286	343	436	1.18e+0	3	
	index_2(values(pe : (slp_load) { 0.001000	CP"; rising_edge' 0.002000 0.389638 0.439651 0.453825 0.596413 0.554214 0.601872 0.627935 0.626252	0.050000 0.004000 0.0398695 0.433522 0.4625470 0.515470 0.563274 0.610933 0.636996 0.035313	· · · · · · · · · · · · · · · · · · ·	0.100000 0.008000 0.414765 0.429078 0.43594 0.478952 0.579345 0.579345 0.627006 0.653072 0.651391	, , , , , , ,	0.250000 0.016000 0.443268 0.457581 0.47800 0.507455 0.560044 0.607855 0.6675513 0.681586 0.679906	, 0.6 , 0.4 , 0.5 , 0.5 , 0.6 , 0.6 , 0.7	600000 332000 195594 609905 13421 559781 512372 560180 707849 733927 732251		0.06400 0.59668 0.6109 0.6608 0.71340 0.71340 0.80894 0.83503 0.83335	34 , 17 13 , 55 , 74 , 32 ,	0.79 0.81 0.83 0.86 0.91	567 ,	2.40000 0.25600 1.19806 1.21237 1.23288 1.26226 1.31484 1.36264 1.41034 1.43642 1.43474	



1	Introduction	3
2	Timing in Synchronous Digital Systems	6
3	Timing in AMS Systems	9
4	The Liberty Block	12
5	Coming Next	17

Automatic timing calculation > Assignment of delay and constraints directly from Liberty files into the Liberty blocks AMS timing-aware simulations Automatic detection of scenarios with timing violations **Multi-corner simulations** Timing-aware simulations over corners via statistical library

Part of your life. Part of tomorrow.