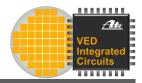


Mastering Unexpected Situations Safely

SensePlanAct

Chassis & Safety | Vehicle Dynamics



Using SystemC Models for pre-silicon development of an ATE Test Suite

COSIDE[®] User Group Meeting 2015

Division Chassis & Safety

Continental Business Unit Vehicle Dynamics

Motivation

System to be Modelled

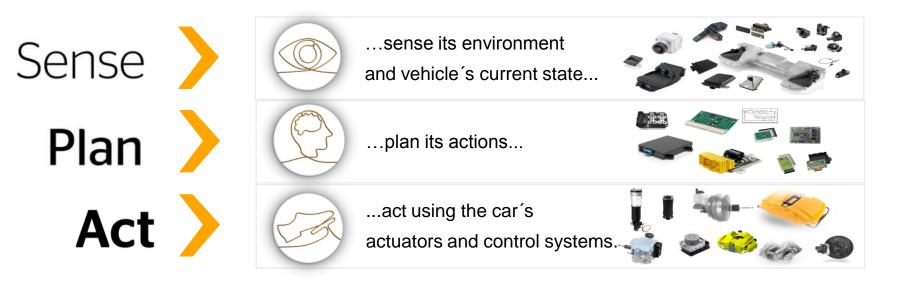
A Results & Conclusion

Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

Continental Corporation Five Strong Divisions

......

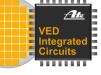
Chassis & Safety	Powertrain	Interior	Tires	ContiTech
Vehicle Dynamics	Engine Systems	Instrumentation & Driver HMI	PLT, Original Equipment	Air Spring Systems
Hydraulic Brake Systems	Transmission	Infotainment & Connectivity	PLT, Repl. Business, EMEA	Benecke-Kaliko Group
Passive Safety & Sensorics	Hybrid Electric Vehicle	Intelligent Transportation Systems	PLT, Repl. Business, The Americas	Compounding Technology
Advanced Driver Assistance Systems (ADAS)	Sensors & Actuators	Body & Security	PLT, Repl. Business,	Conveyor Belt Group
	Fuel & Exhaust Management	Commercial Vehicles &	_ Asia Pacific Commercial Vehicle Tires	 Elastomer Coatings
		Aftermarket		Fluid Technology
			Two Wheel Tires	Power Transmission Group
PLT – Passenger and Light Tr	ruck Tires			Vibration Control


PLT – Passenger and Light Truck Tires

Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

10 November 2015 Dr.-Ing. Sacha Loitz, © Continental AG

4



If a car assists you or drives you automatically, it has to ...

Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

Dr.-Ing. Sacha Loitz. © Continental AG

Integrated vehicle safety development, safety testing & validation

control units

- Inertial measurement units
- Battery and energy monitoring sensors
- (1st tier customer)
- speed sensors
- (AFFP®)
 - V2X systems

Passive Safety

& Sensorics

- Airbag control units / safety (domain)
- Crash sensors
- Chassis and driver intention sensors
- Electronic components
- Wheel, engine and transmission
- Accelerator Force Feedback Pedal

Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

Hydraulic **Brake Systems**

Calipers

Drum brakes

Brake hoses

Tandem master cylinders

Brake pressure regulators

Electric parking brakes

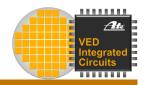
Pedal modules

Boosters

Chassis & Safety Division

Hydraulic Electronic Control Units (HECU)

Vehicle Dynamics


- ABS
- ESC
- Software functions
 - Traction Control
 - Adaptive cruise control
 - Regenerative brake system

Business Units

- Active front steering
- Hill start assist
- Hvdraulic brake assist
- Trailer stability assist
- Chassis electronics
- Suspension systems

Advanced Driver

Functions

Sensors

Radar

Lidar

10 November 2015

Camera

Assistance Systems

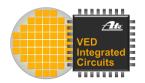
Adaptive cruise control

Emergency brake assist

Lane departure warning

Intelligent head lamp control

Lane keeping support

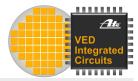

Rear cross traffic alert

Blind spot detection

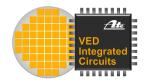
Traffic sign assist

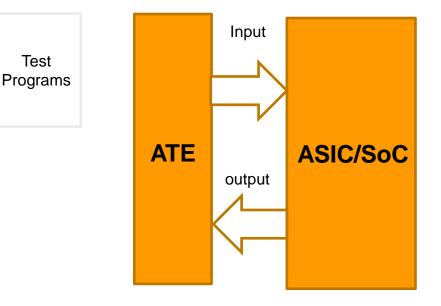
Surround View

Components of a Hydraulic Electronic Control Unit

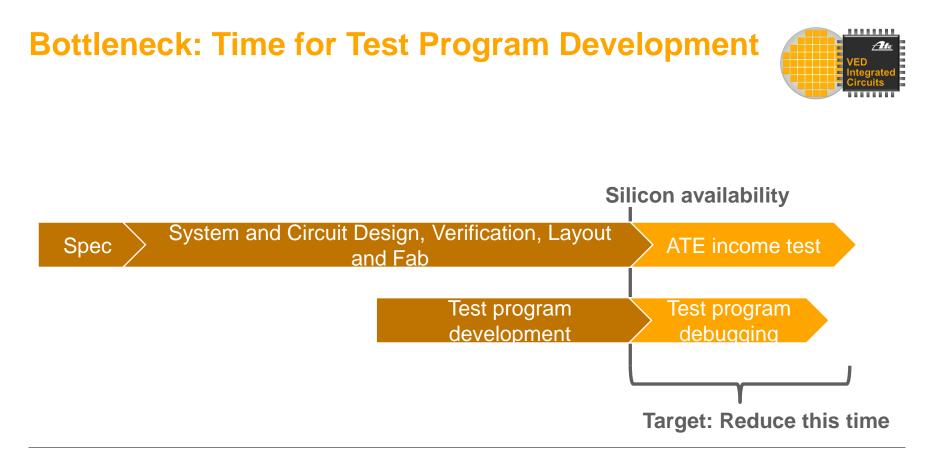

- > Motor
- > Valve block
- > Electronic Control Unit
 - > Microcontroller
 - > Mixed-Signal IC (PCU)

Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

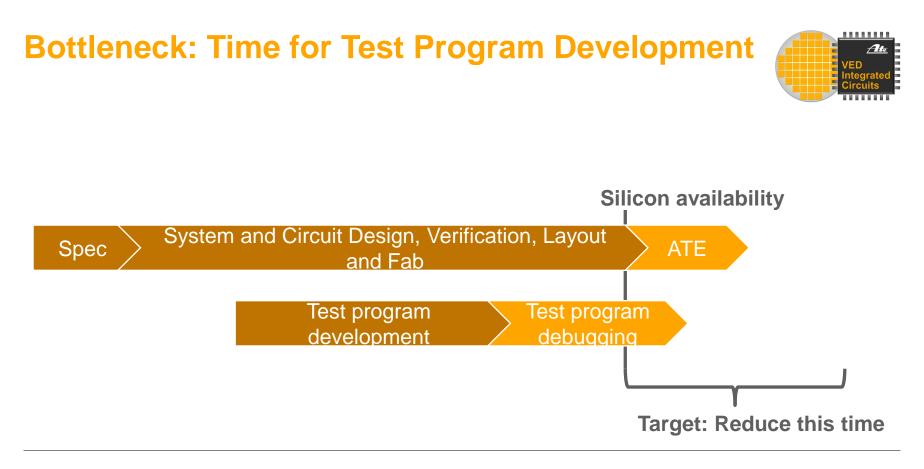



1	Continental Business Unit Vehicle Dynamics
2	Motivation
3	System to be Modelled
4	Results & Conclusion

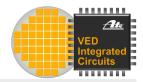
Automated Test Equipment

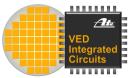


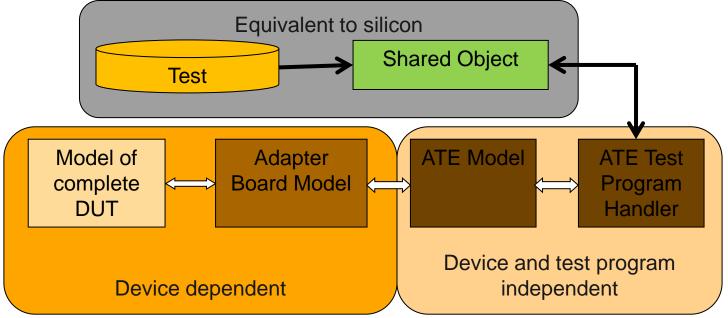
- First mixed-signal IC samples have to run through a series of tests to show that they meet the requirements.
- These tests are performed with the help of an Automated Test Equipment (ATE)
- An ATE system contains instruments that can drive or measure the individual pins of the IC under test
- How to operate these instruments is controlled by test programs which in our case are written in C language



Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

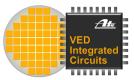


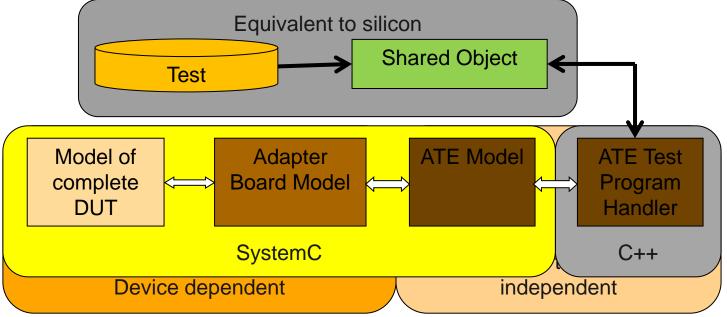




Continental Business Unit Vehicle Dynamics		
Motivation		
System to be Modelled		
Results & Conclusion		

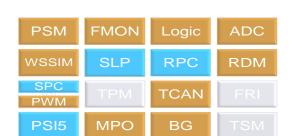
VirtualATE model





Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

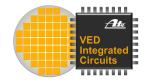
VirtualATE model


Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

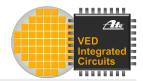
Device dependent models

- > Device Under Test
 - > Hierarchical model of complete IC
- > Adapter board
 - Connection between ATE model and DUT model
 - > Conversion of ATE model data types (real) to DUT data types (e.g. electrical, logic)
 - ~ 1 module for each pin of DUT
 - > External circuitry

Ontinental 🅉



10 November 2015

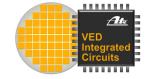

Dr.-Ing. Sacha Loitz. Continental AG

Example for DUT

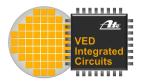
4 F

1	Continental Business Unit Vehicle Dynamics
2	Motivation
3	System to be Modelled
4	Results & Conclusion

Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

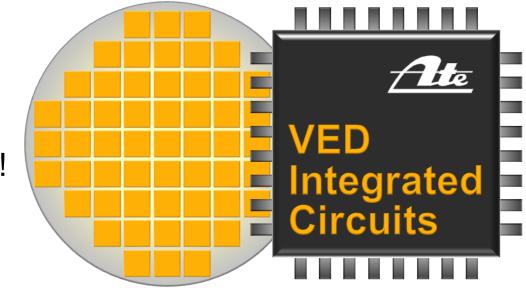

Results

_


17

- Using VirtualATE the test program quality can be significantly increased before silicon availability
- > Examples for errors detected:
 - Wrong address used in SPI transfer
 - Wrong range expected for result
 - Result stored in wrong location
 - > Saturation of ADC not handled correctly
 - > Endless loops due to not changing condition

- Mixing voltages and currents
- > Missing initialization
- > Wrong ADC range



- > VirtualATE helps to significantly improve the test program quality before silicon availability
- > A model of board and DUT is required to achieve this benefit
- Complexity of board and DUT can only be handled with COSIDE[®] as IDE for SystemC-AMS

Thank you for your attention!

ASIC solutions for Vehicle Dynamics

Division Chassis & Safety / BU Vehicle Dynamics / Safety Microcontroller Development Public

Safe and Dynamic Driving towards Vision Zero

Ontinental*

Sense**PlanAct** Chassis & Safety

