

SystemC-AMS and AMESIM Cosimulation

Virtual prototyping of a solenoid injector control of a powertrain automotive system

Motivation

- Within automotive domain, activities are historically organized in silos
 - An entity deals with injector development
 - Another takes care of electronic control design
 - And another one is in charge of function and SW development
- Co-design is often very difficult
 - Different tooling, background, etc...
- Late detection of bugs (during integration of all parts on first real system prototype)
- > => increasing need of bridging different domains around a common representative virtual prototype...
- ...to achieve an affordable cost and time to market

Injection Function Components and Simulation tool

Injector

• AMESim, ...

Asic

• SystemC AMS, ...

Micro-controller

SystemC

Application Description: Injector as a sensor

Image by William Lucas http://www.cvel.clemson.edu/auto/AuE835_Projects_2011/Lucas_project.html

- Current monitoring is used to control injector opening
- Precise current sensing, i.e. monitoring needle movement effects on the current could allow compensation of injector ageing or injector discrepancy from one to the other

Designing a close interacting « cross-domain » feature

- Very painful today
 - Test results are late (integration tests)
 - Many re-design loops
- Ex1: Microcontroller resources shortage => ASIC should be extended
- Ex2: Injector feedback signal too small => coil or needle update...
- > => A virtual prototype would allow
 - Close cross-domain cooperation
 - Early integration tests
- > => best design of mechanic, control electronics and SW
- Co-simulation is state-of-the-art

Expectations

	Today	Expected gain
Dev Cost	SW, ASIC or injector are redesigned for each major correction	 Right the first time No added ASIC Sample (metal mask) Less SW/Calibration releases Less Injector prototypes
Product Development Time	Each new component release takes time	Right the first time No delay
Performance ("BOM Cost")	Average	Optimum

[&]quot;performance" means achieving best Build of Material cost to fulfill emissions requirements and other regulations.

AMESim and SystemC AMS coupling

- AMESim iterates with assumed current value in SystemC AMS
- SystemC AMS checks assumed AMESim value matches expected value
- If error is too large, process is re-started with a new value

AMESim and SystemC AMS coupling

- make_equal assumes a current
- SystemC AMS computes a voltage, provided to AMESim
- AMESim calculates a current with this voltage
- make_equal compares current with assumed current and maybe repeat timestep

Principle timestep repeat with SystemC-AMS 2.0

```
void make equal::processing()
  if((fabs(current_inp.read()-current_out_last)>max_error)
    result wrong=true;
    current_out_last = ...; //new assumption for the current current
  else
    result wrong=false;
    current_out_last = m; //assumption for next current value
  current_outp.write(current_out_last);
void make equal::change_attributes()
  if(result wrong)
    //invalid / repeat last timestep
    request_next_activation(sc_core::SC_ZERO_TIME);
```


Injector Control electrical Schematic

COSIDE® Top level view

Results

Elapsed time: 133127 ms (Core i5 laptop)

Simulated time:8 ms

Summary

- System design across domains becomes more and more essential and is enabler for a further system optimization
- AMESIM SystemC AMS coupling enables algorithm development for thightly interacting analog digital hard-/software and mechanical components on a high accuracy level
- The simulation performance is acceptable, due the moderate number of iterations (the injector has an inductor like behaviour so the current changes slowly and continously)
- The AMESIM SystemC AMS coupling enables a thighter cooperation of different groups
- Electronic and SW development gets closer to physics

H-Inception

- SystemC AMS extension allowing Mutli-Domain Virtual Prototyping
- This co-simulated system reused as a reference basis within H-Inception
 - Same injector modeled within SystemC MDVP
 - Used to debug SystemC MDVP add-ons
 - And for performance comparison

