
Fast Virtual Platforms
for Scalable Software Verification
Lukas Jünger, MachineWare GmbH
lukas@mwa.re





Motivation

● Software challenges

○ Complexity is rising
■ Car: >100 Mio. lines of code

○ Security & safety critical

○ Quality is key

● Bad software is dangerous and expensive
○ Accidents, recalls, liability for hacks, maintenance

● Problem: Testing is
○ Hard to automate, hard to scale, limited by hardware resources

https://informationisbeautiful.net/visualizations/million-lines-of-code/



Virtual Prototyping

● Virtual Platform: Full System Simulation

● Indispensable in software development

○ Everising SW and HW complexity

● Advantages over physical prototypes

○ Available earlier (shift-left methodology)

○ Full flexibility, deep introspection

○ Non-intrusive debug

○ Scalability



Simulation Abstraction Levels and Use Cases

● Many different techniques available
● No silver bullets

○ Right tool for the right job

Transaction Level Modeling (TLM):

● Approximately-timed
○ Architecture exploration, interconnect

● Loosely-timed
○ Early SW development & verification

● Virtualization
○ Regression, SW development

Accuracy

Performance

Analog

Gate-level

RTL

Approximately-timed

Loosely-timed

Virtualization

Trace-driven

Analytical



Demo

https://docs.google.com/file/d/1jVtBD0b2W32bBI3I9iGZx8y7D2cEx8cw/preview


How to build a fast Simulator (for SW verification) ?

● CPU model executes software

○ Performance dominates VP

Use Case: Early SW development

● Pre-silicon, No HW available
● Fast SW models required

Use Case: Regression Testing

● HW available, but limited scalability
● HW acceleration possible

Interconnect

Storage
Controller

Network
Controller GPU

CPU
Subsystem RAM Accelerator

Virtual Platform

TL
M

TL
M

TL
M

TL
M

TL
M

TL
M



MachineWare Instruction Set Simulators

● Fast, functional simulators

● SW development and verification

● Architecture exploration

● Shift-left: Better software earlier

● Easy to use and integrate

○ Intuitive API and user interface

○ Well documented

○ Bring your own environment
Simulation Host

MW ISS (SIM-V, SIM-A)

target-
os.bin Results



Fast Translator Library

● Processor Modeling Toolkit

● Model your processor in C++

● Partially automated modeling flow

● Fast JIT binary translation

● No target software limitations

● Custom instrumentation

● Custom extensions Simulation Host

FTL

JIT

Decoder Registers IRQ

MMU ALU FPU

Instruction Set Simulator



SIM-V Custom Extensions

● Customization is a RISC-V USP

○ Add custom instructions, registers, CSRs, …

● SDK for extensions development

○ No modifications to SIM-V

○ Extension automatically loaded

○ Easy to use

● Leverage FTL for performance

Simulation Host

FTL

JIT

MachineWare
RISC-V

Reference 
Model

Custom
Extension

SIM-V Extension API

SIM-V



FTL Observer Cache Models

● Instrument memory transactions 

○ Cache receives addresses

and maintenance operations

● Analyze statistics

○ Numerous statistics allow to asses

cache and application performance

● Model custom cache hierarchies



ARM-on-ARM

● Traditionally X-on-Y (e.g. ARM on X86)

● Unavoidable ISS overhead ~5-10x

○ No 1-1 instruction mapping

○ In-memory processor state

How about X-on-X?

● Encapsulate processor model in VM

● Regular TLM-based VP 

● ~80% of native performance

ARM Simulation Host

ARM Linux Kernel

Virtual Platform
VP Processor

Model

X-on-X VM

TLM



ARM-on-ARM Dhrystone Benchmark

● Dhrystone benchmark measures 

numeric compute performance

● Upper performance bound

● On good hardware significant boost

● Limited to host HW



Interoperability

MW
CPU

MachineWare
VP

Parallel 
SystemC
TLM 2.0

3rd Party

Your
Custom

Environment

Partner
Tools

VCML:
Ethernet
I2C
SPI
GPIO
CAN, ...

MW tools:
ViPER

inSCight
PyVP



Partners



Summary

● CPU models are key for SW verification

○ Fast, parallel ISS required

● Model interoperability important

○ Good starting point: SystemC TLM-2.0

● Host HW acceleration promising

○ Utilize host processor, GPU, …

● No silver bullets

Interconnect

Storage
Controller

Network
Controller GPU

CPU
Subsystem RAM Accelerator

Virtual Platform

TL
M

TL
M

TL
M

TL
M

TL
M

TL
M



Thanks!
Questions?


