VIRTUAL PROTOTYPING IN SYSTEMC AMS FOR VALIDATION OF TIGHT SENSOR/FIRMWARE INTERACTION IN SMART SENSORS

Alexandra Küster¹, Rainer Dorsch¹, Christian Haubelt², Karsten Einwich³

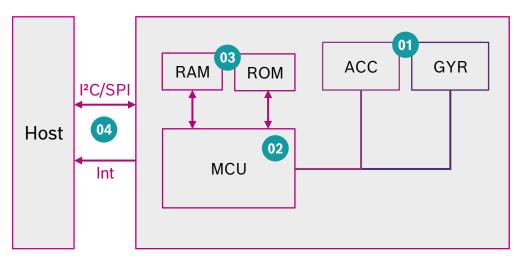
¹Bosch Sensortec GmbH, ²University of Rostock, ³COSEDA Technologies GmbH COSEDA User Group Meeting 2022 November, 24th, 2022

Introduction Smart Sensors

Physical setup

- 1. Application Specific Integrated Circuit (ASIC)
- 2. Printed Circuit Board (PCB)
- 3. Housing
- 4. Micro-Electro-Mechanical System (MEMS)

03


04

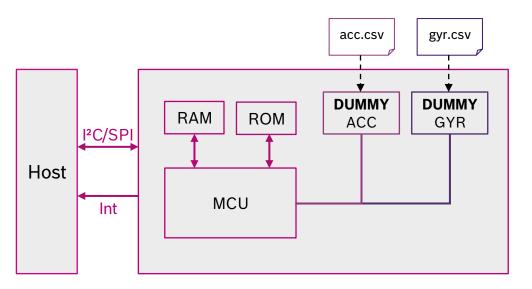
- 5. Bonding wires
- 6. Decoupling unit

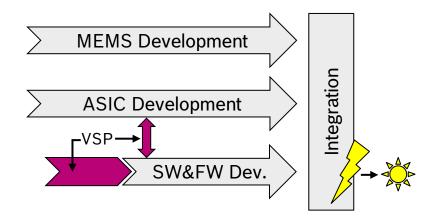
Functional setup

- 1. Sensing unit Read-out circuitry
- 2. Microcontroller unit
- 3. Memory
- 4. Host interface

MEMS mech. → analog → digital smart component calibration data, algorithms sensor setup; data read-out

Bosch Sensortec | Alexandra Küster | 15.09.2022, FDL 2022

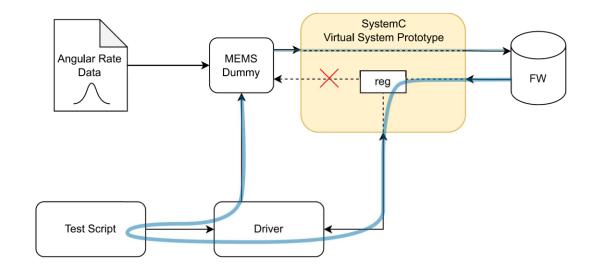

Introduction Virtual System Prototypes (VSPs)


Motivation

- better hardware/software integration
- integration tests on simulation level
- frontloading of software development
- support firmware developers
 - better traceability and system insights

Characteristics

- ► fast system-level model
- SystemC + instruction set simulator
- transaction-level modeling, event-driven
- software + digital hardware


Bosch Sensortec | Alexandra Küster | 15.09.2022, FDL 2022

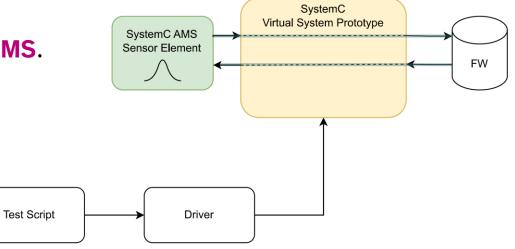
Introduction Problem Statement

The interaction between MEMS and firmware inside the **VSP** is **unidirectional**.

The interaction between MEMS and firmware inside the **sensor** is **bidirectional**.

Test cases must compensate the **missing impact path**. Thus, they get **complex** and **error-prone**.

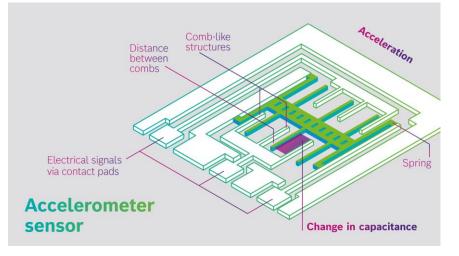
Introduction Proposed Approach

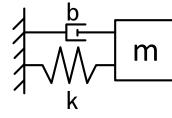

A sensor element (MEMS + frontend) is added to the VSP. It is written in **SystemC AMS**.

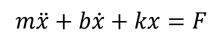
The interaction between MEMS and firmware inside the **VSP** is **bidirectional**.

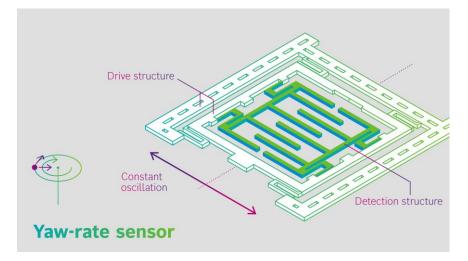
Test cases become

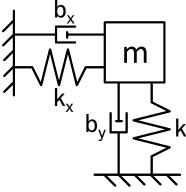
- ► less complex
- ► independent of input files
- reusable for hardware tests
- more expressive (transient behavior visible)


1. Introduction & Problem Statement


2. MEMS Basics


- 3. Virtual System Prototype
- 4. Case Study
- 5. Results & Discussion
- 6. Conclusion



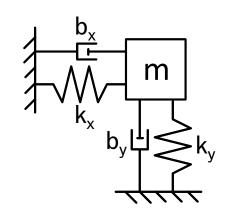

Fundamentals Micro-Electro-Mechanical Systems (MEMS)

$$m\ddot{x} + b_x\dot{x} + k_xx = F_x$$
$$m\ddot{x} + b_y\dot{x} + k_yx = F_y$$

BOSCH

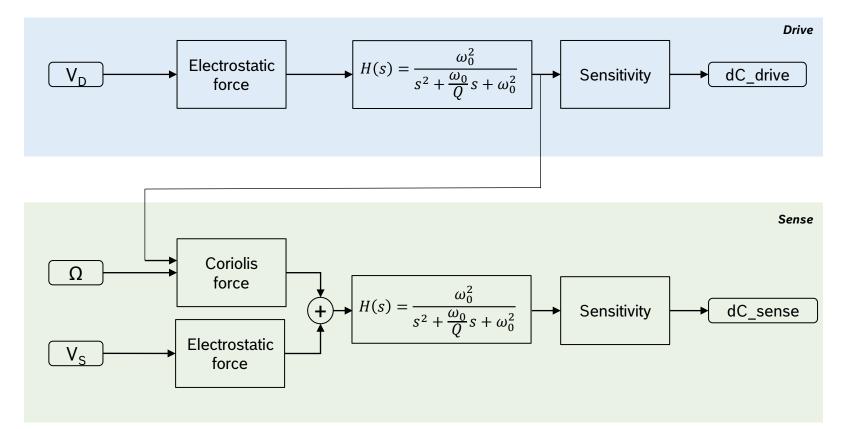
Bosch Sensortec | Alexandra Küster | 15.09.2022, FDL 2022

1. Introduction & Problem Statement

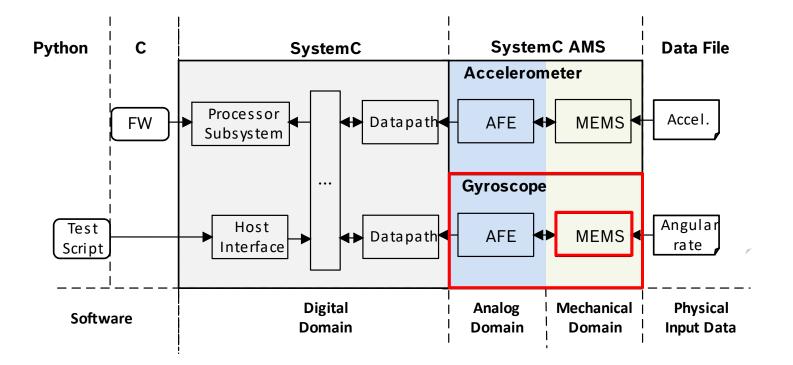

2. MEMS Basics & Modeling

3. Virtual System Prototype

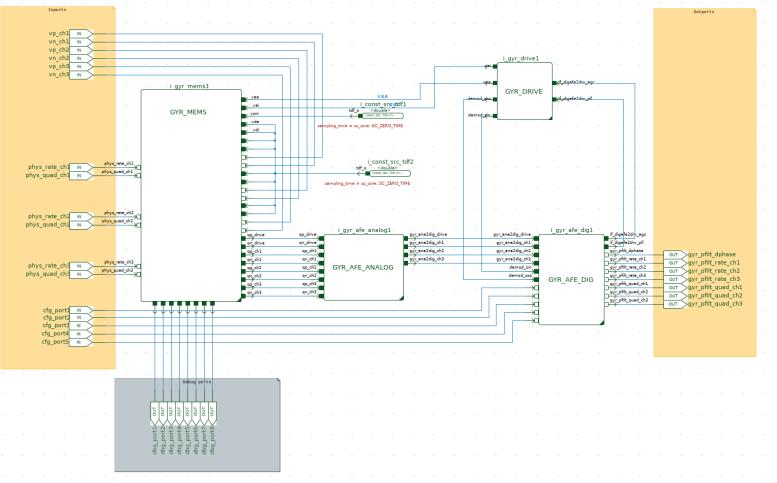
- 4. Case Study
- 5. Results & Discussion
- 6. Conclusion



Virtual System Prototype MEMS Implementation


Bosch Sensortec | Alexandra Küster | 15.09.2022, FDL 2022

9



Virtual System Prototype System Overview

Virtual System Prototype Implementation

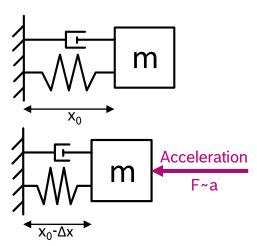
 (\mathbb{H})

BOSCH

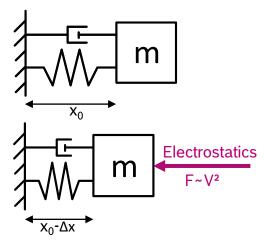
1 Bosch Sensorte

1. Introduction & Problem Statement

- 2. MEMS Basics
- 3. Virtual System Prototype

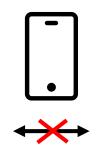

4. Case Study

- 5. Results & Discussion
- 6. Conclusion



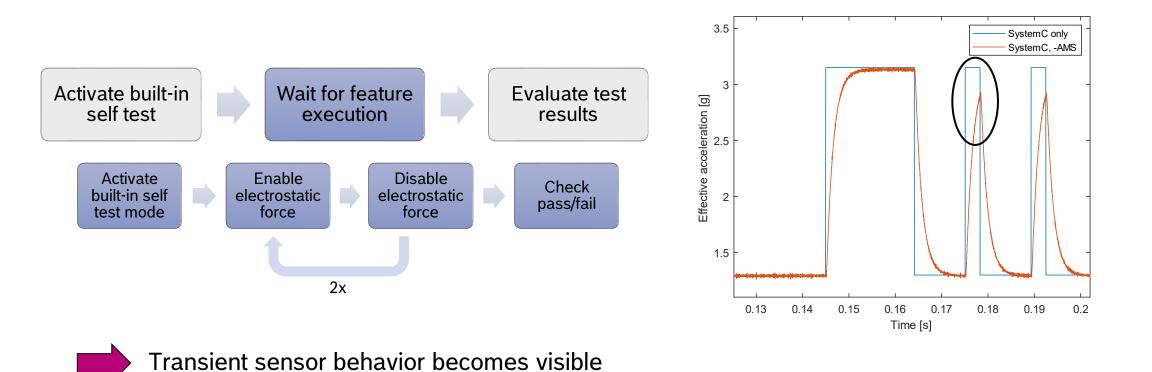
Case Study Built-in Self Test for Accelerometer

Normal sensing mode

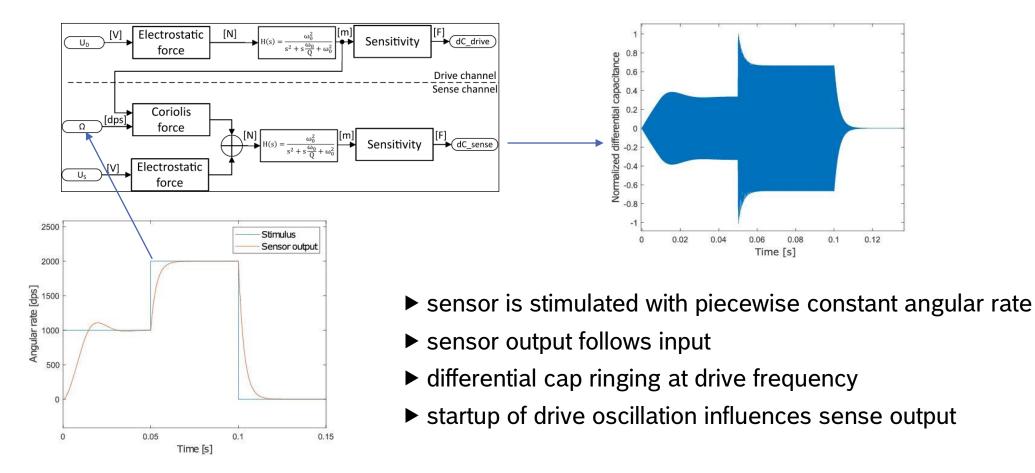


Self test mode

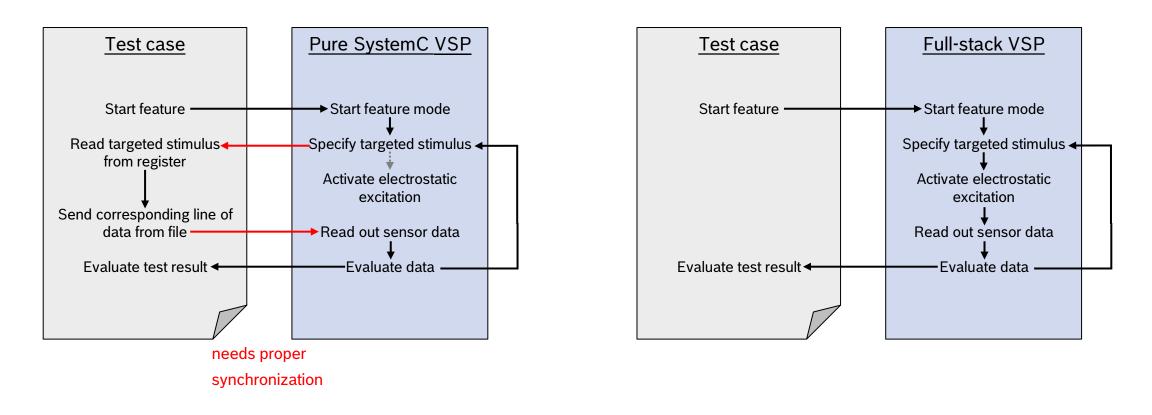
The built-in self test excites the MEMS electrostatically to check the correct mechanical functionality.



13 Bosch Sensortec | Alexandra Küster | 15.09.2022, FDL 2022



Case Study Built-in Self Test for Accelerometer


Case Study Gyroscope Model Validation

Bosch Sensortec | Alexandra Küster | 15.09.2022, FDL 2022

Case Study Sensor/Firmware Interaction in Gyroscopes

1. Introduction & Problem Statement

- 2. MEMS Basics
- 3. Virtual System Prototype
- 4. Case Study

5. Results & Discussion

6. Conclusion

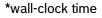
Results and Discussion Benefits

Comparison of firmware test procedures

	Virtual Prototype Version		
	Pure SystemC	Full-stack	
File input	Measurements	None	
Complexity of test case	High	Low	
Error sources	Test case, VSP	VSP	
Insights into system behavior	Limited to algorithmic, no physical insights	Algorithmic and physical insights	
Timing errors covered	No	Yes	
Reusability for hardware	Low	High	

The overall confidence in the test result increases significantly

Firmware developers gain better insights into the sensor's behavior


Simulation and hardware tests can be matched by reuse

Results and Discussion Performance Analysis

Acc	Pure SystemC	Full-stack	Ratio
Initialization	0.173s*	1.655s	9.59
Procedure	0.160s**	0.160s	
Firmware	0.303s	0.742s	2.45
Procedure	0.045s	0.045s	
Test Execution	0.476s 0.205s	2.397s 0.205s	5.04

Gyr	Pure SystemC	Full-stack	Ratio (norm. to simulated time)
Initialization	1.3s	20.6s	15.85
Procedure	0.136s	0.136s	
Firmware	113.0s	487.1s	4.77
Procedure	1.923s	1.739s	
Test Execution	114.3s 2.0592	507.7s 4.88s	4.88

** simulated time

The increase of simulation time stays reasonable

Transient behavior is reflected in the VSP

Large idle times during initialization increase the ratio

19 Bosch Sensortec | Alexandra Küster | 15.09.2022, FDL 2022

1. Introduction & Problem Statement

- 2. MEMS Basics
- 3. Virtual System Prototype
- 4. Case Study
- 5. Results & Discussion
- 6. Conclusion

Heterogeneous virtual system prototypes are wellsuited for the validation of tight sensor/firmware interaction.

They can be developed in SystemC/-AMS.

Simulation performance is degraded <5x compared to a SystemC-only approach.

THANK YOU FOR YOUR ATTENTION.

ANY QUESTIONS?

References

- [1] J. Rudolf, D. Gis, S. Stieber, C. Haubelt and R. Dorsch, "SystemC Power Profiling for IoT Device Firmware using Runtime Configurable Models," 2019 8th Mediterranean Conference on Embedded Computing (MECO), 2019, pp. 1-6, doi: 10.1109/MECO.2019.8759994.
- [2] F. Pêcheux, C. Grimm, T. Maehne, M. Barnasconi and K. Einwich, "SystemC AMS Based Frameworks for Virtual Prototyping of Heterogeneous Systems," 2018 IEEE International Symposium on Circuits and Systems (ISCAS), 2018, pp. 1-4, doi: 10.1109/ISCAS.2018.8351864.
- [3] J. M. R. Velzquez, F. Mailly and P. Nouet, "A generic model for sensor simulation at system level," 2018 Symposium on Design, Test, Integration & Packaging of MEMS and MOEMS (DTIP), 2018, pp. 1-4, doi: 10.1109/DTIP.2018.8394198.
- [4] Y. Andryakov, A. Anikina, Y. Belyaev, A. Belogurov, D. Kostygov and D. Puzankov, "ASIC and MEMS co-design methodology," 2016 IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conference (ElConRusNW), 2016, pp. 120-123, doi: 10.1109/ElCon- RusNW.2016.7448136.
- [5] M. Shafique, A. Menon, K. Virk and J. Madsen, "System-Level Modeling and Simulation of MEMS-based Sensors," 2005 Pakistan Section Multitopic Conference, 2005, pp. 1-6, doi: 10.1109/INMIC. 2005.334503.
- [6] F. Pêcheux, C. Lallement and A. Vachoux, "VHDL-AMS and Verilog- AMS as alternative hardware description languages for efficient modeling of multidiscipline systems," in IEEE Transactions on Computer- Aided Design of Integrated Circuits and Systems, vol. 24, no. 2, pp. 204-225, Feb. 2005, doi: 10.1109/TCAD.2004.841071.
- [7] M. Barnasconi and S. Adhikari, "Invited: ESL design in SystemC AMS," 2017 54th ACM/EDAC/IEEE Design Automation Conference (DAC), 2017, pp. 1-5, doi: 10.1145/3061639.3072951.
- [8] F. Cenni, S. Scotti and E. Simeu, "A SystemC AMS/TLM platform for CMOS video sensors," Proceedings of the 2011 Conference on Design & Architectures for Signal & Image Processing (DASIP), 2011, pp. 1-6, doi: 10.1109/DASIP.2011.6136873.
- [9] J. Rudolf, M. Strobel, J. Benz, C. Haubelt, M. Radetzki and O. Bringmann, "Automated Sensor Firmware Development Generation, Optimization, and Analysis," MBMV 2019; 22nd Workshop – Methods and Description Languages for Modelling and Verification of Circuits and Systems, 2019, pp. 1-12.
- [10] F. Cenni, O. Guillaume, M. Diaz-Nava and T. Maehne, "SystemCAMS/ MDVP-based modeling for the virtual prototyping of MEMS applications," 2015 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2015, pp. 1-6, doi: 10.1109/DTIP.2015.7160972.
- [11] K. Einwich, "Introduction to the SystemC AMS extension standard," 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems, 2011, pp. 6-8, doi: 10.1109/DDECS. 2011.5783036.
- ▶ [12] Coseda Technologies GmbH. Coside. http://www.cosedatech.com/coside-overview.