

Ralph Görgen 28.10.2019

SECURE CONNECTIONS FOR A SMARTER WORLD

Company Public – NXP, the NXP logo, and NXP secure connections for a smarter world are trademarks of NXP B.V. All other product or service names are the property of their respective owners. © 2019 NXP B.V.

Outline

- Motivation: Automotive Battery Safety
- Model-based Top-Down Flow
- Automated Platform Generation Flow
- Extension to Support AMS
- Summary and Conclusion

Li-lon traction battery incl. BMS example

Hardware Architecture Model (Platform Model)

- IC level hardware architecture described in SysML Internal Block Diagram
- Decomposed hardware resources and communication links

Platform Model Generation Flow

Platform Model Generation Flow (II)

- Integrated in existing design and system integration framework
 - Design tools
 - Directory structures
 - Documentation rules

- . . .

All extensions need to fit in this framework

AMS Extensions for IP-XACT

- Accellera Vendor Extensions for Analog and Mixed Signal
 - Will become native element in next version of IP-XACT standard (IEEE 1685-202x)
- Extends IP-XACT wire port
- domainTypeDefs
 - Describes domain type of a port per view, e.g. electrical
- signalTypeDefs
 - Describes the signal semantics of a port per view

signalType	Verilog AMS	SystemC AMS
continuous conservative	electrical outp;	sca_eln::sca_terminal outp;
continuous non-conservative	sf_voltage outp;	sca_lsf::sca_out outp;
discrete	wreal outp;	sca_tdf::sca_out <double> outp;</double>

Annotate AMS Attributes in Platform Model

Generation of IP-XACT Description

```
nxp::createComponent nxp.com bms bcc ADC 2.0 ${nxp::workarea}/chip lib/bcc ADC/METADATA/
     nxp::createWirePort inp pi in ""
     nxp::createWireTypeDefs inp pi [ list kms::analog [ list ESL ] false [ list analog.h ] ]
 4
     nxp::createWirePort inm pi in ""
     nxp::createWireTypeDefs inm pi [ list bms::analog [ list ESL ] false [ list analog.h ] ]
 6
     nxp::createWirePort vdda pi in ""
     nxp::createWireTypeDefs vdda pi [ list bms::analog [ list ESL ] false [ list analog.h ] ]
8
     nxp::createFileSet ESL \
 9
       [ list \
10
         [ list ADClib \
           [ list \
11
                                                                                Create component
             ../coside/lib/bcc ADC.h \
             ../coside/lib/bcc ADC.cpp ]\
13
                                                                                   Create ports
14
         1\
15
                                                                                  Create fileset
16
     nxp::generateXmlAmsExtension nxp.com bms bcc ADC 2.0 \
17
       [ list ] \
18
       [ list \
                                                                             Create port signal types
19
         [ list inp pi discrete ESL ] \
         [ list inm pi discrete ESL ] \
20
21
         [ list vdda pi discrete ESL ] \
22
```


AMS Component in IP-XACT

```
💸 bcc_ADC [2.0] 🛭

¬ → nxp.com/bms/bcc ADC/2.0

  ▶ ■ Bus Interfaces
 V<sub>k</sub> Views
   Wire

▼ Vendor Extensions

▼ V<sub>E</sub> accellera_1:signalTypeDef

                ¥ accellera_1:signalType
                ¥ accellera:viewNameRef
     Port (inm_pi)
     Port (vdda_pi)
     Port (vref pi)
     Port (ctrl_pi)
     Port (out po)
  ▶ File Sets
```

VendorExtensions:

```
<accellera:wire>
<accellera_1:signalTypeDefs>
<accellera_1:signalTypeDef>
<accellera_1:signalType>discrete</accellera_1:signalType>
<accellera:viewNameRef>ESL</accellera:viewNameRef>
</accellera_1:signalTypeDef>
</accellera_1:signalTypeDefs>
</accellera:wire>
```


Generate SystemC Model from IP-XACT

- Digital leaf components
 - NXP internal tool generate modules incl. interface and registers
 - Register models based on SCML
 - Base module for generated elements and derived module to add behavior
- Hierarchical components
 - Commercial SystemC Netlister (Magillem tool suite)
- Data types for ports/signals
 - Header file containing default typedef to int
- Build files for SystemC compilation based on filesets

Create Analog Components in COSIDE

Starting Point to Implement Component Behavior

Add Testbench to Complete Model

Compile and Run Virtual Prototype

```
File Edit View Scrollback Bookmarks Settings Help
ra/build $ bin/BMS1BCC
       SystemC 2.3.1-Accellera --- Nov 6 2018 17:45:13
       Copyright (c) 1996-2014 by all Contributors,
       ALL RIGHTS RESERVED
       SystemC AMS extensions 2.1.0-COSEDA Release date: 20160404
       Copyright (c) 2010-2014 by Fraunhofer-Gesellschaft IIS/EAS
       Copyright (c) 2015-2016 by COSEDA Technologies GmbH
       Licensed under the Apache License, Version 2.0
Info: SystemC-AMS:
       6 SystemC-AMS modules instantiated
       1 SystemC-AMS views created
       6 SystemC-AMS synchronization objects/solvers instantiated
Info: SystemC-AMS:
       1 dataflow clusters instantiated
         cluster 0:
               6 dataflow modules/solver, contains e.g. module: bcc.bat_module
               6 elements in schedule list,
              1 us cluster period,
               ratio to lowest: 1 e.g. module: bcc.bat module
              ratio to highest: 1 sample time e.g. module: bcc.bat module
               2 connections to SystemC de, 1 connections from SystemC de
```


Summary and Conclusion

- Model-based top-down flow for safety-critical semiconductor products
- Automated flow to generate skeleton for executable VP form platform model
- Flow extension for AMS based on IP-XACT AMS extensions and COSIDE

Conclusion

- Good integration in existing system integration environment
- COSIDE fits well for AMS component modeling and refinement
- Manual creation of projects and modules in COSIDE breaks automation
 - Script interface to control basic COSIDE functions would be helpful

Questions?

Context of this work:

SysML Based Architecture Definition and Platform Generation Flow

DVCon Europe 2019 | Oct 30, 15:15 - 16:45 | Forum 6: System Level Design

SECURE CONNECTIONS FOR A SMARTER WORLD