
The Next Generation ESL Design Flow 
around the SystemC AMS Standard
Martin Barnasconi 

NXP Semiconductors, SystemC AMSWG chair



Outline

 Why do we need ESL design?

 From Traditional V-model to Concurrent Engineering

 Why SystemC AMS extensions? 

 10+ Years of SystemC AMS Standardization

 SystemC AMS Features

 Next Generation ESL Design Flow – introducing UVM

 Summary

2



Why do we need ESL design?

 Growing complexity of mixed-signal ICs and systems 

- Integrated microcontrollers (and thus firmware)

- Interaction with analog environment (e.g. sensors, wireless communication)

- Smarter system partitioning and analog-digital interaction to comply with low 

power and die size constraints

 Compliancy to functional safety and security standards

- Introduction of fault injection methods to verify system robustness (ISO26262)

- Avoid design and specification vulnerabilities (ITU-T security standards)

 More emphasis on electronic system-level (ESL) design and 

verification

- Design: executable specification of the system (reference model)

- Verification: earlier and more robust testing of functionality against the 

specification using the reference model

3



Traditional Design Flow – V model

4

Algorithm/functional

Architecture/system

Block/sub-system (IP)

IC/system integration

and test

Product integration

and test

IP implementation

and test

Product spec
Product 

implementation

Left side: 

Specification and 

requirements definition

Right side: 

Integration & hardware 

prototyping

ESL

D&V

Product

V&V

System

V&V

IP

V&V



Need for an integral system-level design and 

verification approach for heterogeneous systems

From V-model to Concurrent Engineering

5

Algorithm/functional

Architecture/system

Block/sub-system (IP)

IC/system integration

and test

Product integration

and test

IP implementation

and test

Product

V&V

ESL

D&V

System

V&V

IP

V&V



The Mixed Level & Language Challenge

6

Algorithm/functional

Architecture/system

Block/sub-system (IP)

State

diagrams

Communicating

processes
M-code,

C/C++, …

IC/system integration

and test

System

V&V

D/M

DUT

D/M

IP implementation

and test

Product integration

and test

DUT

IP

V&V

D/M

HW

D/M

Product

V&V

Verilog

Verilog-A/MS

ESL

D&V



Why SystemC AMS extensions?

 Unified and standardized modeling language to design and verify 

embedded mixed-signal architectures

- Abstract AMS model descriptions supporting a design refinement methodology, 

from functional/algorithm down to implementation views

- Enabling tool-independent exchange and reuse of AMS models and building 

blocks

- System-level language for analog and digital signal processing

 Facilitate the creation of mixed-signal virtual prototypes

- Integration of abstract AMS/RF subsystems in combination with digital HW/SW 

subsystems 

 Foundation for development of AMS system-level design tools

- AMS language constructs and semantics defined as C++ class library built on 

top of IEEE Std 1666-2011 (SystemC LRM)

7



SystemC AMS – History

 ~2000: First C-based AMS initiatives

(AVSL, MixSigC)

 2002: SystemC-AMS study group started

 2005: First SystemC-AMS PoC

released by Fraunhofer

 2006: OSCI AMSWG installed

 2008: SystemC AMS Draft 1 LRM

 2010: SystemC AMS 1.0 standard

 2010: SystemC AMS 1.0 PoC released

by Fraunhofer

 2012: SystemC AMS 2.0 draft standard

 2013: SystemC AMS 2.0 standard

 2013: SystemC AMS 2.0 PoC release

 1999: Open SystemC Initiative

(OSCI) announced 

 2000: SystemC 1.0 released 

(sourceforge.net)

 2002: OSCI SystemC 1.0.2

 2005: IEEE Std 1666-2005 LRM

 2005: SystemC Transaction level 

modeling (TLM) 1.0 released

 2007: SystemC 2.2 released

 2009: SystemC TLM 2.0 standard

 2009: SystemC Synthesizable Subset 

Draft 1.3

 2011: IEEE Std 1666-2011 LRM

 2012: SystemC 2.3 reference

implementation released

1999

today8

Slide from first SystemC AMS day, May 12, 2011

8



SystemC AMS advantages

 SystemC, thus C++ based

- The power of C++

- Object oriented – modular and easy extendable

- AMS class libraries available for basic building blocks (analog primitives)

- Tool independent / EDA-vendor neutral 

 Modeling in multiple abstractions using one simulator

- No need for complex multi-kernel/co-simulation

- No difficult APIs

- Converter models and ports are part of the language

- Allows abstraction along four axis

- structure, behavior, communication and time/frequency

 Transparent modeling platform

- Access to simulation kernel to ease debugging and introspection

9



10

Abstraction of analog signals

t

v(t), i(t)

t

x(t)

t

x(t)

abstractionabstraction
v(t)

i(t)

Linear Signal Flow (LSF)

 Non-conservative 

description represented 

by single quantity x(t), to 

represent e.g. the 

voltage or current (not 

both)

 Continuous in time and 

value

Timed Data Flow (TDF)

 Non-conservative 

description represented 

by single quantity x(t), 

to represent e.g. the 

voltage or current (not 

both)

 Discrete-time samples 

only, can hold any 

arbitrary data type

Electrical Linear 

Networks (ELN)

 Conservative description 

represented by two 

dependent quantities, 

being the voltage v(t) 

and the current i(t)

 Continuous in time and 

value

 Analog (linear) solver 

will resolve the 

Kirchhoff’s Laws



11

SystemC AMS 2.0 Standard

 SystemC AMS 2.0 Standard defined in 

a Language Reference Manual (LRM)

 Contents

- Terminology and conventions

- Core language definitions

- Predefined models of computation and 

analysis types

- Utility definitions

- Introduction to the SystemC AMS 

extensions (Informative)

- Glossary (Informative)

- Deprecated features (Informative)

- Changes between SystemC AMS 1.0 and 

2.0 standard (Informative)



SystemC AMS User’s Guide

 Comprehensive guide explaining the 

basics of the AMS extensions

- TDF, LSF and ELN modeling

- Small-signal frequency-domain modeling

- Simulation and tracing

- Modeling and refinement methodology

- Many code examples

 Application examples

- Binary Amplitude Shift Keying (BASK) 

- Plain-Old-Telephone-System (POTS)

- Analog filters and networks

 Has proven its value

- Reference guide for many new users 

12

SystemC AMS extensions User’s Guide

Abstract
This is the SystemC Analog Mixed Signal (AMS) extensions User’s Guide.

Keywords
Open SystemC Initiative, SystemC, Analog Mixed Signal, Heterogeneous Modeling and Simulation.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

March 8, 2010



Next Generation ESL Design Flow

 No structured nor unified verification 

methodology available for ESL design 

- The Universal Verification Methodology 

(UVM) in SystemVerilog is primarily 

targeting block/IP level (RTL) verification, 

not system-level 

 Porting UVM to SystemC/C++ enables

- creation of more advanced system-level 

test benches

- reuse of verification components between 

system-level and block-level verification

 Target is to make UVM truly universal, 

and not tied to a particular language

- Standardization in Accellera has started

13

*UVM-SystemC = UVM implemented in 

SystemC/C++

C++

SystemC-AMS
TLM SCV

UVM-SystemC* -AMS

Verification & Validation

Methodology

SystemC

-AMS



Universal Verification Methodology

 Accellera standard to create modular, 

scalable, configurable and reusable 

test benches

- Based on verification components with 

standardized interfaces 

 Class library which provides a set of 

built-in features dedicated to 

verification

- Utilities for phasing, component overriding 

(factory), configuration, comparing, 

scoreboarding, reporting, etc.

 Coverage Driven Verification (CDV) 

- Introducing automated stimulus generation, 

independent result checking and coverage 

collection

14



UVM in SystemC and SystemC-AMS…

 Brings a system-level verification methodology for embedded 

systems which include HW/SW and AMS functions

- SystemC is the recognized standard for system-level design, and needs to be 

extended with advanced verification concepts

- SystemC AMS available to cover the AMS verification needs

 Enables reuse of tests and test benches across verification 

(simulation) and validation (HW-prototyping) platforms

- This requires a portable language like C++ to run tests on 

HW prototypes and even measurement equipment

- Enabling Hardware-in-the-Loop simulation or Rapid Control Prototyping

 Will be based on standards and open source reference 

implementations

- Leverage from existing methodology standards and reference 

implementations, aligned with best practices in verification

15



ESL Design and Verification Flow

16

Algorithm/functional

Architecture/system

Block/sub-system (IP)

State

diagrams

Communicating

processes
M-code,

C/C++, …

IC/system integration

and test

System

V&V

D/M

DUT

D/M

IP implementation

and test

Product integration

and test

DUT

IP

V&V

D/M

HW

D/M

Product

V&V

Verilog

Verilog-A/MS

ESL

D&V

HiL



Summary

 Today’s complex mixed-signal systems require an advanced ESL 

design and verification flow

- Design: Executable specification of the system (reference model)

- Verification: Earlier and more robust testing of functionality against the 

specification using the reference model

 SystemC 2.3.1 and SystemC AMS 2.0 are mature standards 

- Enable system-level modeling of mixed AMS/RF and digital HW/SW systems at 

different levels of abstraction

 The next generation ESL design flow will bring UVM in SystemC

- Universal Verification Methodology encourages reuse of tests and test benches 

across verification (simulation) and validation (HW-prototyping) platforms

17



More information

 SystemC AMS 2.0 standard and community pages

- www.accellera.org/downloads/standards/systemc

- www.systemc-ams.org

 SystemC AMS forum

- forums.accellera.org/index.php?/forum/13-systemc-ams-analogmixed-signal/

 SystemC-AMS 1.0 and 2.0 proof-of-concept library

- www.eas.iis.fraunhofer.de/systemcamsdownloads

 UVM-SystemC

- www.verdi-fp7.eu/

18



Thank you


