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Why do we need ESL design?

 Growing complexity of mixed-signal ICs and systems 

- Integrated microcontrollers (and thus firmware)

- Interaction with analog environment (e.g. sensors, wireless communication)

- Smarter system partitioning and analog-digital interaction to comply with low 

power and die size constraints

 Compliancy to functional safety and security standards

- Introduction of fault injection methods to verify system robustness (ISO26262)

- Avoid design and specification vulnerabilities (ITU-T security standards)

 More emphasis on electronic system-level (ESL) design and 

verification

- Design: executable specification of the system (reference model)

- Verification: earlier and more robust testing of functionality against the 

specification using the reference model
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Traditional Design Flow – V model
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Need for an integral system-level design and 

verification approach for heterogeneous systems

From V-model to Concurrent Engineering
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The Mixed Level & Language Challenge
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Why SystemC AMS extensions?

 Unified and standardized modeling language to design and verify 

embedded mixed-signal architectures

- Abstract AMS model descriptions supporting a design refinement methodology, 

from functional/algorithm down to implementation views

- Enabling tool-independent exchange and reuse of AMS models and building 

blocks

- System-level language for analog and digital signal processing

 Facilitate the creation of mixed-signal virtual prototypes

- Integration of abstract AMS/RF subsystems in combination with digital HW/SW 

subsystems 

 Foundation for development of AMS system-level design tools

- AMS language constructs and semantics defined as C++ class library built on 

top of IEEE Std 1666-2011 (SystemC LRM)
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SystemC AMS – History

 ~2000: First C-based AMS initiatives

(AVSL, MixSigC)

 2002: SystemC-AMS study group started

 2005: First SystemC-AMS PoC

released by Fraunhofer

 2006: OSCI AMSWG installed

 2008: SystemC AMS Draft 1 LRM

 2010: SystemC AMS 1.0 standard

 2010: SystemC AMS 1.0 PoC released

by Fraunhofer

 2012: SystemC AMS 2.0 draft standard

 2013: SystemC AMS 2.0 standard

 2013: SystemC AMS 2.0 PoC release

 1999: Open SystemC Initiative

(OSCI) announced 

 2000: SystemC 1.0 released 

(sourceforge.net)

 2002: OSCI SystemC 1.0.2

 2005: IEEE Std 1666-2005 LRM

 2005: SystemC Transaction level 

modeling (TLM) 1.0 released

 2007: SystemC 2.2 released

 2009: SystemC TLM 2.0 standard

 2009: SystemC Synthesizable Subset 

Draft 1.3

 2011: IEEE Std 1666-2011 LRM

 2012: SystemC 2.3 reference

implementation released

1999

today8

Slide from first SystemC AMS day, May 12, 2011
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SystemC AMS advantages

 SystemC, thus C++ based

- The power of C++

- Object oriented – modular and easy extendable

- AMS class libraries available for basic building blocks (analog primitives)

- Tool independent / EDA-vendor neutral 

 Modeling in multiple abstractions using one simulator

- No need for complex multi-kernel/co-simulation

- No difficult APIs

- Converter models and ports are part of the language

- Allows abstraction along four axis

- structure, behavior, communication and time/frequency

 Transparent modeling platform

- Access to simulation kernel to ease debugging and introspection
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Abstraction of analog signals
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SystemC AMS 2.0 Standard

 SystemC AMS 2.0 Standard defined in 

a Language Reference Manual (LRM)

 Contents

- Terminology and conventions

- Core language definitions

- Predefined models of computation and 

analysis types

- Utility definitions

- Introduction to the SystemC AMS 

extensions (Informative)

- Glossary (Informative)

- Deprecated features (Informative)

- Changes between SystemC AMS 1.0 and 

2.0 standard (Informative)



SystemC AMS User’s Guide

 Comprehensive guide explaining the 

basics of the AMS extensions

- TDF, LSF and ELN modeling

- Small-signal frequency-domain modeling

- Simulation and tracing

- Modeling and refinement methodology

- Many code examples

 Application examples

- Binary Amplitude Shift Keying (BASK) 

- Plain-Old-Telephone-System (POTS)

- Analog filters and networks

 Has proven its value

- Reference guide for many new users 
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SystemC AMS extensions User’s Guide

Abstract
This is the SystemC Analog Mixed Signal (AMS) extensions User’s Guide.

Keywords
Open SystemC Initiative, SystemC, Analog Mixed Signal, Heterogeneous Modeling and Simulation.

Copyright © 2009, 2010 by the Open SystemC Initiative (OSCI). All rights reserved.

March 8, 2010



Next Generation ESL Design Flow

 No structured nor unified verification 

methodology available for ESL design 

- The Universal Verification Methodology 

(UVM) in SystemVerilog is primarily 

targeting block/IP level (RTL) verification, 

not system-level 

 Porting UVM to SystemC/C++ enables

- creation of more advanced system-level 

test benches

- reuse of verification components between 

system-level and block-level verification

 Target is to make UVM truly universal, 

and not tied to a particular language

- Standardization in Accellera has started
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Universal Verification Methodology

 Accellera standard to create modular, 

scalable, configurable and reusable 

test benches

- Based on verification components with 

standardized interfaces 

 Class library which provides a set of 

built-in features dedicated to 

verification

- Utilities for phasing, component overriding 

(factory), configuration, comparing, 

scoreboarding, reporting, etc.

 Coverage Driven Verification (CDV) 

- Introducing automated stimulus generation, 

independent result checking and coverage 

collection
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UVM in SystemC and SystemC-AMS…

 Brings a system-level verification methodology for embedded 

systems which include HW/SW and AMS functions

- SystemC is the recognized standard for system-level design, and needs to be 

extended with advanced verification concepts

- SystemC AMS available to cover the AMS verification needs

 Enables reuse of tests and test benches across verification 

(simulation) and validation (HW-prototyping) platforms

- This requires a portable language like C++ to run tests on 

HW prototypes and even measurement equipment

- Enabling Hardware-in-the-Loop simulation or Rapid Control Prototyping

 Will be based on standards and open source reference 

implementations

- Leverage from existing methodology standards and reference 

implementations, aligned with best practices in verification
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ESL Design and Verification Flow
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Summary

 Today’s complex mixed-signal systems require an advanced ESL 

design and verification flow

- Design: Executable specification of the system (reference model)

- Verification: Earlier and more robust testing of functionality against the 

specification using the reference model

 SystemC 2.3.1 and SystemC AMS 2.0 are mature standards 

- Enable system-level modeling of mixed AMS/RF and digital HW/SW systems at 

different levels of abstraction

 The next generation ESL design flow will bring UVM in SystemC

- Universal Verification Methodology encourages reuse of tests and test benches 

across verification (simulation) and validation (HW-prototyping) platforms
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More information

 SystemC AMS 2.0 standard and community pages

- www.accellera.org/downloads/standards/systemc

- www.systemc-ams.org

 SystemC AMS forum

- forums.accellera.org/index.php?/forum/13-systemc-ams-analogmixed-signal/

 SystemC-AMS 1.0 and 2.0 proof-of-concept library

- www.eas.iis.fraunhofer.de/systemcamsdownloads

 UVM-SystemC

- www.verdi-fp7.eu/
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Thank you


