SystemC-AMS Modeling at Infineon Technologies Austria - COM

Gerhard Nössing, Martin Schell

Communications, Infineon Technologies Austria AG, Villach, AUSTRIA <u>gerhard.noessing@infineon.com</u>, <u>martin.schell@infineon.com</u>

WIRELINE COMMUNICATION SYSTEM:

The requirements of a whole Voice over IP (VOIP) system setup for Customer Premises Equipment (CPE) is presented. The Infineon VINETIC 2VIP product and the required SystemC-AMS-Model is presented in detail.

The System consists of the Transmission-Line using Resistors and Capacitances including Protection circuits.

A high voltage driver (HV-SLIC) is used to control the transmission line.

The modeling of the ADC and DAC using transfer-function, Noise-Shaping and different noise models is shown.

The digital filter part is modeled in static data flow (SDF) to cope with the change of data-rate.

The way to model the used hardware-processors and the according C-Code firmware of the processors and the inclusion of them in the SystemC-AMS simulation is shown.

The parallel usage of static data flow and standard SystemC event driven signals is also used for modeling the DCDC converter in the system.

As summary a collection of all requirements and up to now used solutions including possible improvements will be given.

Fig. 1: VINETIC Voice over IP System.

C/C++-Based Modelling of Embedded Mixed-Signal Systems

SystemC-AMS Modelling for Voice over IP Physical Interfaces

Dresden, June 25th and 26th, 2007 Gerhard Nössing Infineon Technologies Austria AG Villach

Gerhard Nössing

- Working since 1997 for the Design Center Villach
 - □ Diploma theses was dealing with V.34 Modems
 - □ Concept Engineer for POTS codecs
 - □ Concept Engineer for ADSL CO AFE
 - ☐ System Architect for POTS System
- Main Topics regarding Modeling and Simulation
 - □System Modeling in Matlab, Simulink and COSSAP (before 2001)
 - ☐ Since 2000 we were working together with FHG Dresden on the development of SystemC-AMS (MEDEA Anastasia Project)
 - Member of OSCI SystemC-AMS working group

Reasons to use SystemC for Modeling of Analog / Mixed Signal Systems

- Prototype / Executable Specification
- High Abstraction Possible
 - □ Fast Simulation
 - □ Ready to handle complex Systems
- Based on C/C++
 - Most Processor Cores have a C compiler
 - □ Coupling to a lot of tools
- Easy Link to Digital Design
- Mix different Models of Computation
- IP Protection and Model Exchange

Example POTS System Vinetic 2CPE

Vinetic-2CPE

to the parties

- Digital Signal processing based on ASDSP and HW filters
- Carmel Subsystem (including PROM, PRAM, DROM, DRAM)
- ⇒ Total Memory: 4,4Mbit (53 blocks)
- Host Interface (serial and 8bit Interface, PCM)
- Analog macro incl. PLL
- Clock frequency: 164MHz

Application of different analog MoC

red:

Simulation Time for Vinetic 2CPE System

- SystemC-AMS Simulation
 - □ 2 channel including: SLIC, externals, AFE, DFE, ASDSP and part of Carmel FW
 - □ 1 sec realtime → 1,5h simulation time
- VHDI RTI
 - □ 2 channel including: AFE, DFE, ASDSP, Carmel and Interfaces
 - □ 1 sec realtime → 300h simulation time
- Nano Sim (Fast CMOS simulator)
 - □ 2 channel including: AFE top level
 - □ 1 ms realtime → 15h simulation time
- Titan Simulation
 - □ 2 channel including: AFE top level
 - □ 1 ms realtime → 500h simulation time
- SystemC-AMS Simulation for Duslic-XT
 - only one channel
 - □ reduce sampling rate for analog blocks (used for FW simulation only)
 - ☐ 1sec realtime → 90 sec simulation time

System Simulation and Verification approach

VINETIC 2CPE SE overall workflow

legend:

red: interfaces to other BU

blue: our workflow green: our outputs

Module Specification / DŢD

Adobe FrameMaker 7.1

- *.h, *.cpp
- *.sym
- *.fm, *.svg

esign

del (only frequency domain)

plots of **Return Loss** RX, TX, TH Nyquist (Stability) Noise, OOB

Coefficients

Cross checks of SystemC time domain via FFT with Matlab frequency domain

SystemC model (frequency and time domain)

eclipse

Connecting modules together **Netlists**

MATLAB

Some Simulation Results: DC Characteristic Simulation

Pulse Dialing Simulation

DC Regulation Noise

or without noise shaper Infineon Technologies 2007. All rights reserved. with noise shaper

Thank you ...

Never do a complex system without system simulation

